See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Hermes-2-Theta-Llama-3-8B
bf16: true
chat_template: llama3
datasets:
- data_files:
- 057728ef95175bab_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/057728ef95175bab_train_data.json
type:
field_instruction: text_description
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso01/9c0ba83d-7ad1-4ee2-9ce3-e505d153c9e6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 80GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/057728ef95175bab_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9c0ba83d-7ad1-4ee2-9ce3-e505d153c9e6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9c0ba83d-7ad1-4ee2-9ce3-e505d153c9e6
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
9c0ba83d-7ad1-4ee2-9ce3-e505d153c9e6
This model is a fine-tuned version of NousResearch/Hermes-2-Theta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.7806
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.5787 | 0.0008 | 1 | 7.8462 |
6.6335 | 0.0072 | 9 | 6.3017 |
4.4421 | 0.0144 | 18 | 4.3422 |
4.1249 | 0.0216 | 27 | 4.1222 |
3.7757 | 0.0288 | 36 | 3.9809 |
3.7921 | 0.0360 | 45 | 3.9309 |
3.52 | 0.0432 | 54 | 3.8699 |
3.8861 | 0.0504 | 63 | 3.8419 |
3.9975 | 0.0576 | 72 | 3.8108 |
3.8676 | 0.0648 | 81 | 3.7908 |
3.619 | 0.0720 | 90 | 3.7825 |
3.4554 | 0.0792 | 99 | 3.7806 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for lesso01/9c0ba83d-7ad1-4ee2-9ce3-e505d153c9e6
Base model
NousResearch/Meta-Llama-3-8B
Finetuned
NousResearch/Hermes-2-Pro-Llama-3-8B
Finetuned
NousResearch/Hermes-2-Theta-Llama-3-8B