See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloomz-560m
bf16: true
chat_template: llama3
datasets:
- data_files:
- 2308b14a5d6455e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2308b14a5d6455e2_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso02/4c99151d-665d-44d8-a4c4-bd9aa8c0b0c4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/2308b14a5d6455e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e7d0b034-05cb-4b89-9551-f3015464d4fe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e7d0b034-05cb-4b89-9551-f3015464d4fe
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
4c99151d-665d-44d8-a4c4-bd9aa8c0b0c4
This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8169
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
16.1269 | 0.0036 | 1 | 3.7412 |
14.449 | 0.0180 | 5 | 3.6055 |
13.3215 | 0.0361 | 10 | 3.2141 |
12.1192 | 0.0541 | 15 | 2.9464 |
11.0116 | 0.0721 | 20 | 2.8343 |
10.7206 | 0.0902 | 25 | 2.8169 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for lesso02/4c99151d-665d-44d8-a4c4-bd9aa8c0b0c4
Base model
bigscience/bloomz-560m