See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM2-135M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 51027af41b24ecea_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/51027af41b24ecea_train_data.json
type:
field_instruction: bio
field_output: reply
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso05/ac7ffea7-4dad-4fe8-86c5-640a3e80935a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000205
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 5000
micro_batch_size: 4
mlflow_experiment_name: /tmp/51027af41b24ecea_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 50
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 893384c3-fe6e-4406-a06d-f7b0b65693ce
wandb_project: 05a
wandb_run: your_name
wandb_runid: 893384c3-fe6e-4406-a06d-f7b0b65693ce
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
ac7ffea7-4dad-4fe8-86c5-640a3e80935a
This model is a fine-tuned version of unsloth/SmolLM2-135M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.1982
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000205
- train_batch_size: 4
- eval_batch_size: 4
- seed: 50
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 3.4703 |
3.2876 | 0.1208 | 500 | 3.2851 |
3.264 | 0.2417 | 1000 | 3.2576 |
3.2494 | 0.3625 | 1500 | 3.2411 |
3.2305 | 0.4834 | 2000 | 3.2264 |
3.2099 | 0.6042 | 2500 | 3.2156 |
3.2234 | 0.7251 | 3000 | 3.2079 |
3.2001 | 0.8459 | 3500 | 3.2008 |
3.1994 | 0.9668 | 4000 | 3.2003 |
3.1712 | 1.0876 | 4500 | 3.1987 |
3.1854 | 1.2085 | 5000 | 3.1982 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.