See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
bf16: true
chat_template: llama3
datasets:
- data_files:
- fe39abf3fa37abcd_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fe39abf3fa37abcd_train_data.json
type:
field_input: abstract
field_instruction: title
field_output: target
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso07/55115a3a-053b-43e4-9a9d-d6f9717f600f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/fe39abf3fa37abcd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 55115a3a-053b-43e4-9a9d-d6f9717f600f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 55115a3a-053b-43e4-9a9d-d6f9717f600f
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
55115a3a-053b-43e4-9a9d-d6f9717f600f
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2443
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8561 | 0.0010 | 1 | 3.0109 |
2.7696 | 0.0086 | 9 | 2.8094 |
2.465 | 0.0172 | 18 | 2.5265 |
2.7689 | 0.0257 | 27 | 2.3902 |
2.559 | 0.0343 | 36 | 2.3262 |
2.1182 | 0.0429 | 45 | 2.2834 |
2.441 | 0.0515 | 54 | 2.2702 |
2.024 | 0.0600 | 63 | 2.2614 |
2.2886 | 0.0686 | 72 | 2.2531 |
2.172 | 0.0772 | 81 | 2.2467 |
1.892 | 0.0858 | 90 | 2.2446 |
2.3167 | 0.0943 | 99 | 2.2443 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 19