Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: false
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 684f8537349c76ab_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/684f8537349c76ab_train_data.json
  type:
    field_input: system
    field_instruction: user
    field_output: assistant
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso07/e6bdfa97-5090-445b-9017-ba45d2da0a32
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/684f8537349c76ab_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e6bdfa97-5090-445b-9017-ba45d2da0a32
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e6bdfa97-5090-445b-9017-ba45d2da0a32
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

e6bdfa97-5090-445b-9017-ba45d2da0a32

This model is a fine-tuned version of fxmarty/tiny-llama-fast-tokenizer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
10.3786 0.0001 1 10.3823
10.3817 0.0007 5 10.3822
10.385 0.0013 10 10.3819
10.3786 0.0020 15 10.3816
10.3836 0.0026 20 10.3812
10.3814 0.0033 25 10.3808
10.3842 0.0039 30 10.3805
10.3843 0.0046 35 10.3803
10.3792 0.0052 40 10.3802
10.3768 0.0059 45 10.3802
10.3826 0.0065 50 10.3802

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso07/e6bdfa97-5090-445b-9017-ba45d2da0a32

Adapter
(130)
this model