See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060
bf16: false
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f996ec3ef9498441_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f996ec3ef9498441_train_data.json
type:
field_input: hypothesis
field_instruction: premise
field_output: label
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso07/ffe6d889-3179-4787-8df3-2cb088effe80
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/f996ec3ef9498441_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ffe6d889-3179-4787-8df3-2cb088effe80
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ffe6d889-3179-4787-8df3-2cb088effe80
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
ffe6d889-3179-4787-8df3-2cb088effe80
This model is a fine-tuned version of The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2202
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.3663 | 0.0003 | 1 | 11.0764 |
10.8446 | 0.0016 | 5 | 10.2003 |
7.2651 | 0.0032 | 10 | 6.3815 |
4.1694 | 0.0048 | 15 | 3.2931 |
0.1651 | 0.0064 | 20 | 0.5952 |
0.8162 | 0.0080 | 25 | 0.3947 |
0.2373 | 0.0096 | 30 | 0.2568 |
0.2932 | 0.0112 | 35 | 0.2457 |
0.3395 | 0.0128 | 40 | 0.2641 |
0.2349 | 0.0143 | 45 | 0.2217 |
0.2709 | 0.0159 | 50 | 0.2202 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.