See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf
bf16: true
chat_template: llama3
datasets:
- data_files:
- 6a0ff27418d2d07e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6a0ff27418d2d07e_train_data.json
type:
field_input: author
field_instruction: title
field_output: summary
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso08/8fc457fe-dd84-4b61-ac4f-5bb4972ec0b7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/6a0ff27418d2d07e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8fc457fe-dd84-4b61-ac4f-5bb4972ec0b7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8fc457fe-dd84-4b61-ac4f-5bb4972ec0b7
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
8fc457fe-dd84-4b61-ac4f-5bb4972ec0b7
This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3742
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.8778 | 0.0010 | 1 | 2.4494 |
5.0474 | 0.0093 | 9 | 2.4394 |
4.7511 | 0.0185 | 18 | 2.4041 |
5.0081 | 0.0278 | 27 | 2.3869 |
4.7301 | 0.0371 | 36 | 2.3819 |
4.5012 | 0.0463 | 45 | 2.3793 |
4.8402 | 0.0556 | 54 | 2.3773 |
4.7247 | 0.0648 | 63 | 2.3757 |
4.8509 | 0.0741 | 72 | 2.3749 |
4.7795 | 0.0834 | 81 | 2.3746 |
4.7992 | 0.0926 | 90 | 2.3742 |
4.683 | 0.1019 | 99 | 2.3742 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for lesso08/8fc457fe-dd84-4b61-ac4f-5bb4972ec0b7
Base model
NousResearch/CodeLlama-7b-hf