See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: EleutherAI/gpt-neo-125m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f1bfae7be46056e8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f1bfae7be46056e8_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response_8b_instruct
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso18/fdebcb1b-3c51-4fe7-bf2c-3aeb8d04ea39
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/f1bfae7be46056e8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 180
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_cache: false
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff228523-b38e-4081-8a47-fba2a3a7734a
wandb_project: 18a
wandb_run: your_name
wandb_runid: ff228523-b38e-4081-8a47-fba2a3a7734a
warmup_steps: 50
weight_decay: 0.01
xformers_attention: true
fdebcb1b-3c51-4fe7-bf2c-3aeb8d04ea39
This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 180
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 1.9374 |
7.6107 | 0.0051 | 50 | 1.8925 |
7.0242 | 0.0102 | 100 | 1.8307 |
7.3308 | 0.0154 | 150 | 1.8075 |
7.0242 | 0.0205 | 200 | 1.7921 |
6.8691 | 0.0256 | 250 | 1.7818 |
7.0417 | 0.0307 | 300 | 1.7739 |
6.9122 | 0.0358 | 350 | 1.7693 |
7.0597 | 0.0410 | 400 | 1.7677 |
6.6821 | 0.0461 | 450 | 1.7665 |
6.912 | 0.0512 | 500 | 1.7662 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso18/fdebcb1b-3c51-4fe7-bf2c-3aeb8d04ea39
Base model
EleutherAI/gpt-neo-125m