letingliu/holder_type

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.5101
  • Validation Loss: 0.4941
  • Train Accuracy: 0.8942
  • Epoch: 19

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 30, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.6872 0.6614 0.6154 0
0.6474 0.6141 0.8365 1
0.5998 0.5594 0.8846 2
0.5464 0.5138 0.8942 3
0.5160 0.4941 0.8942 4
0.4997 0.4941 0.8942 5
0.4984 0.4941 0.8942 6
0.5082 0.4941 0.8942 7
0.5010 0.4941 0.8942 8
0.5084 0.4941 0.8942 9
0.5026 0.4941 0.8942 10
0.5065 0.4941 0.8942 11
0.5019 0.4941 0.8942 12
0.5066 0.4941 0.8942 13
0.4976 0.4941 0.8942 14
0.5072 0.4941 0.8942 15
0.5018 0.4941 0.8942 16
0.5097 0.4941 0.8942 17
0.5131 0.4941 0.8942 18
0.5101 0.4941 0.8942 19

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.15.0
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for letingliu/holder_type

Finetuned
(9220)
this model