char-bert-base-uncased

This model is a fine-tuned version of char-bert-base-uncased/checkpoint-1840240 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1760

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss
0.8329 1.0 92012 0.4066
0.4066 2.0 184024 0.3223
0.3422 3.0 276036 0.2803
0.3044 4.0 368048 0.2560
0.2782 5.0 460060 0.2399
0.2593 6.0 552072 0.2265
0.2693 7.0 644084 0.2366
0.2559 8.0 736096 0.2228
0.2431 9.0 828108 0.2112
0.2334 10.0 920120 0.2103
0.2453 11.0 1012132 0.2164
0.2372 12.0 1104144 0.2113
0.2288 13.0 1196156 0.2004
0.2208 14.0 1288168 0.2002
0.2152 15.0 1380180 0.1941
0.2241 16.0 1472192 0.1940
0.2188 17.0 1564204 0.1954
0.2132 18.0 1656216 0.1968
0.2077 19.0 1748228 0.1887
0.2036 20.0 1840240 0.1863
0.2109 21.0 1932252 0.2009
0.2075 22.0 2024264 0.1840
0.2031 23.0 2116276 0.1884
0.1992 24.0 2208288 0.1902
0.196 25.0 2300300 0.1760

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.9.0+cu111
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.