liam168/c2-roberta-base-finetuned-dianping-chinese
Model description
用中文对话情绪语料训练的模型,2分类:乐观和悲观。
Overview
- Language model: BertForSequenceClassification
- Model size: 410M
- Language: Chinese
Example
>>> from transformers import AutoModelForSequenceClassification , AutoTokenizer, pipeline
>>> model_name = "liam168/c2-roberta-base-finetuned-dianping-chinese"
>>> class_num = 2
>>> ts_texts = ["我喜欢下雨。", "我讨厌他."]
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=class_num)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
>>> classifier(ts_texts[0])
>>> classifier(ts_texts[1])
[{'label': 'positive', 'score': 0.9973447918891907}]
[{'label': 'negative', 'score': 0.9972558617591858}]
- Downloads last month
- 200
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.