|
--- |
|
language: |
|
- en |
|
--- |
|
|
|
# O->LED_para document simplification system |
|
|
|
This is a pretrained version of the document simplification model presented in the Findings of ACL 2023 paper ["Context-Aware Document Simplification"](https://arxiv.org/abs/2305.06274). |
|
|
|
It is a system based on the [Longformer encoder-decoder](https://huggingface.co/allenai/led-base-16384) that operates at the paragraph-level and is intended to be guided by a planner. |
|
|
|
Target reading levels (1-4) should be indicated via a control token prepended to each input sequence ("\<RL_1\>", "\<RL_2\>", "\<RL_3\>", "\<RL_4\>"). If using the terminal interface, this will be handled automatically. |
|
|
|
## How to use |
|
It is recommended to use the [plan_simp](https://github.com/liamcripwell/plan_simp/tree/main) library to interface with the model. |
|
|
|
Here is how to load this model in PyTorch: |
|
|
|
```python |
|
# loading |
|
from plan_simp.models.bart import load_simplifier |
|
simplifier, tokenizer, hparams = load_simplifier("liamcripwell/o-ledpara") |
|
|
|
# generation |
|
from plan_simp.scripts.generate import Launcher |
|
launcher = Launcher() |
|
launcher.dynamic(model_ckpt="liamcripwell/o-ledpara", clf_model_ckpt="liamcripwell/pgdyn-plan", **params) |
|
``` |
|
|
|
Plan-guided generation and evaluation can be run from the terminal (see the repo for more details). |
|
|
|
```bash |
|
python doc_simp/scripts/generate.py dynamic |
|
--clf_model_ckpt=liamcripwell/pgdyn-plan |
|
--model_ckpt=liamcripwell/o-ledpara |
|
--test_file=<test_data> |
|
--doc_id_col=pair_id |
|
--context_dir=<context_dir> |
|
--out_file=<output_csv> |
|
--reading_lvl=s_level |
|
--context_doc_id=pair_id |
|
--para_lvl=True |
|
|
|
python plan_simp/scripts/eval_simp.py |
|
--input_data=newselaauto_docs_test.csv |
|
--output_data=test_out_oledpara.csv |
|
--x_col=complex_str |
|
--r_col=simple_str |
|
--y_col=pred |
|
--doc_id_col=pair_id |
|
--prepro=True |
|
--sent_level=True |
|
``` |
|
|