|
--- |
|
language: en |
|
tags: |
|
- bart |
|
- seq2seq |
|
- summarization |
|
license: apache-2.0 |
|
datasets: |
|
- samsum |
|
widget: |
|
- text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\ |
|
Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\ |
|
\ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\ |
|
\ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face\n" |
|
model-index: |
|
- name: bart-base-samsum |
|
results: |
|
- task: |
|
name: Abstractive Text Summarization |
|
type: abstractive-text-summarization |
|
dataset: |
|
name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization' |
|
type: samsum |
|
metrics: |
|
- name: Validation ROGUE-1 |
|
type: rogue-1 |
|
value: 46.6619 |
|
- name: Validation ROGUE-2 |
|
type: rogue-2 |
|
value: 23.3285 |
|
- name: Validation ROGUE-L |
|
type: rogue-l |
|
value: 39.4811 |
|
- name: Test ROGUE-1 |
|
type: rogue-1 |
|
value: 44.9932 |
|
- name: Test ROGUE-2 |
|
type: rogue-2 |
|
value: 21.7286 |
|
- name: Test ROGUE-L |
|
type: rogue-l |
|
value: 38.1921 |
|
- task: |
|
type: summarization |
|
name: Summarization |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
metrics: |
|
- name: ROUGE-1 |
|
type: rouge |
|
value: 45.0148 |
|
verified: true |
|
- name: ROUGE-2 |
|
type: rouge |
|
value: 21.6861 |
|
verified: true |
|
- name: ROUGE-L |
|
type: rouge |
|
value: 38.1728 |
|
verified: true |
|
- name: ROUGE-LSUM |
|
type: rouge |
|
value: 41.2794 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 1.597476601600647 |
|
verified: true |
|
- name: gen_len |
|
type: gen_len |
|
value: 17.6606 |
|
verified: true |
|
--- |
|
## `bart-base-samsum` |
|
This model was obtained by fine-tuning `facebook/bart-base` on Samsum dataset. |
|
|
|
## Usage |
|
```python |
|
from transformers import pipeline |
|
|
|
summarizer = pipeline("summarization", model="lidiya/bart-base-samsum") |
|
conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? |
|
Philipp: Sure you can use the new Hugging Face Deep Learning Container. |
|
Jeff: ok. |
|
Jeff: and how can I get started? |
|
Jeff: where can I find documentation? |
|
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face |
|
''' |
|
summarizer(conversation) |
|
``` |
|
|
|
## Training procedure |
|
- Colab notebook: https://colab.research.google.com/drive/1RInRjLLso9E2HG_xjA6j8JO3zXzSCBRF?usp=sharing |
|
|
|
## Results |
|
| key | value | |
|
| --- | ----- | |
|
| eval_rouge1 | 46.6619 | |
|
| eval_rouge2 | 23.3285 | |
|
| eval_rougeL | 39.4811 | |
|
| eval_rougeLsum | 43.0482 | |
|
| test_rouge1 | 44.9932 | |
|
| test_rouge2 | 21.7286 | |
|
| test_rougeL | 38.1921 | |
|
| test_rougeLsum | 41.2672 | |
|
|