|
--- |
|
license: apache-2.0 |
|
license_name: tongyi-qianwen-license-agreement |
|
license_link: >- |
|
https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT |
|
datasets: |
|
- oscar-corpus/OSCAR-2301 |
|
- mc4 |
|
language: |
|
- ja |
|
--- |
|
|
|
<p align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c8a2e01c25d2c581a381c1/9CbN4lDGU42c-7DmK_mGM.png" alt="drawing" width="600"/> |
|
</p> |
|
|
|
TinyLlama + Japanese pre-training (50,004 steps) |
|
|
|
# How to use |
|
|
|
|
|
### Hugggingface |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("lightblue/karasu-1.1B") |
|
model = AutoModelForCausalLM.from_pretrained("lightblue/karasu-1.1B", torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}] |
|
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"}) |
|
|
|
prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False) |
|
|
|
pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False) |
|
``` |
|
|
|
|
|
### VLLM |
|
```python |
|
from vllm import LLM, SamplingParams |
|
|
|
sampling_params = SamplingParams(temperature=0.0, max_tokens=100) |
|
llm = LLM(model="lightblue/karasu-1.1B") |
|
|
|
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}] |
|
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"}) |
|
prompt = llm.llm_engine.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False) |
|
prompts = [prompt] |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
|
``` |
|
|
|
|
|
|
|
# Base checkpoint |
|
[TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T](TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T) |
|
|
|
# Training datasets (total ~3B) |
|
A filtered then sampled set from |
|
* OSCAR (Japanese) |
|
* mC4 (Japanese) |
|
|
|
# Developed by |
|
|
|
<a href="https://www.lightblue-tech.com"> |
|
<img src="https://www.lightblue-tech.com/wp-content/uploads/2023/08/color_%E6%A8%AA%E5%9E%8B-1536x469.png" alt="Lightblue technology logo" width="400"/> |
|
</a> |
|
|
|
### Engineers |
|
Peter Devine |
|
|
|
Sho Higuchi |
|
|
|
### Advisors |
|
Yuuki Yamanaka |
|
|
|
Atom Sonoda |
|
|
|
### Project manager |
|
Shunichi Taniguchi |
|
|
|
Tomioka Wataru |
|
|
|
### Dataset evaluator |
|
Renju Aoki |