File size: 8,885 Bytes
5b0200e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c2046a
 
5b0200e
1c2046a
5b0200e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c2046a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    CausalLMOutputWithPast,
)

from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .rita_configuration import RITAConfig
import torch.nn.functional as F
logger = logging.get_logger(__name__)

@torch.jit.script
def RITA_gelu(hidden_states):
    return hidden_states * 0.5 * (1.0 + torch.tanh(0.79788456 * hidden_states * (1 + 0.044715 * hidden_states * hidden_states)))

class RITAGELU(nn.Module):
    def __init__(self):
        super().__init__()
    
    def forward(self, hidden_states):
        return RITA_gelu(hidden_states)

def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=x1.ndim - 1)

class RotaryEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.d_model % config.num_heads == 0
        
        self.d_model = config.d_model
        self.num_heads = config.num_heads
        self.max_seq_len = config.max_seq_len
        
        head_dim = self.d_model // self.num_heads
        inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim))
        self.register_buffer('inv_freq', inv_freq)
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None
    
    def forward(self, x: torch.FloatTensor, seq_dim=1) -> torch.FloatTensor:
        seq_len = x.shape[seq_dim]
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.cos_cached = emb.cos()[None, None, :, :]
            self.sin_cached = emb.sin()[None, None, :, :]
        return self.cos_cached, self.sin_cached
    
    def apply_rotary_pos_emb(self, q, k, cos, sin):
        return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)

    
class SelfAttention(nn.Module):
    """Implementation of MultiHeadAttention following `Karpathy's MinGPT <https://github.com/karpathy/minGPT>`_.
    modified to use rotary embeddings.
    
    Parameters
    ----------
    d_model: int,
         total dimension of the model.
    num_heads: int,
        number of parallel attention heads.
    num_layers: int,
        number of layers in the model, used for the Megatron-like init.
    rotaty_embedding: Optional[Block], default None,
        a RotaryEmbedding Block to add positionnal information in Queries and Keys
    dropout: float, default 0.1,
        amount of dropout on the attention weights.
    sigma: float, default 0.02,
        standard deviation used for the init.
    trainable: bool, default True,
        if False, the Module parameters will be hidden from the optimizer.
    """

    def __init__(
        self,
        d_model: int,
        num_heads: int,
        num_layers: int,
        rotary_embedding= None,
        dropout: float = 0.1,
        sigma=0.02,
        use_cache: bool = False,
        bias=True,
    ):
        super().__init__()
        assert d_model % num_heads == 0
        self.d_model = d_model
        self.num_heads = num_heads
        self.head_dim = self.d_model // self.num_heads
        self.num_layers = num_layers
        self.dropout = dropout
        self.sigma = sigma
        self.bias = bias

        # key, query, value projections for all heads
        self.key = nn.Linear(d_model, d_model, bias=bias)
        self.query = nn.Linear(d_model, d_model, bias=bias)
        self.value = nn.Linear(d_model, d_model, bias=bias)
        # regularization
        self.attn_drop = nn.Dropout(dropout)
        self.resid_drop = nn.Dropout(dropout)
        # output projection
        self.proj = nn.Linear(d_model, d_model, bias=bias)

        self.rotary_embedding = rotary_embedding
        self.layer_id = None  # will be set by the Transformer itself
        self.use_cache = use_cache
        self.qkv = None
        self.bias = bias

    def forward(
        self,
        x,
        attn_mask: Optional[torch.BoolTensor] = None,
        padding_mask: Optional[torch.BoolTensor] = None,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:

        N, L, D = x.size()  # Batch_size, Context_size, d_model

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        k = (
            self.key(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
        )  # (N, nh, L, hs)
        q = (
            self.query(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
        )  # (N, nh, L, hs)
        v = (
            self.value(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
        )  # (N, nh, L, hs)
        
        if self.rotary_embedding is not None:
            cos, sin = self.rotary_embedding(x)
            q, k = self.rotary_embedding.apply_rotary_pos_emb(q, k, cos, sin)

        # causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        
        if attn_mask is not None:
            att[:,:,-L:, -L: ].masked_fill_(attn_mask.view(1, 1, L, L), float("-inf"))
            
        att = (
            att.transpose(0, 2)
            .masked_fill(padding_mask.view(1, 1, N, L), float("-inf"))
            .transpose(0, 2)
            if padding_mask is not None
            else att
        )
        
        att = F.softmax(att, dim=-1)
        att = self.attn_drop(att)
        y = att @ v  # (N, nh, L, L) x (N, nh, L, hs) -> (N, nh, L, hs)
        y = (
            y.transpose(1, 2).contiguous().view(N, L, D)
        )  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y))
        return y

class DecoderLayer(nn.Module):
    """Transformer block containing the self-attention module and the feedfoward module."""

    def __init__(
        self, config
    ):
        super().__init__()
        self.self_attention = SelfAttention(config.d_model, config.num_heads, config.dropout, rotary_embedding=RotaryEmbedding(config))
        self.attn_norm = nn.LayerNorm(config.d_model)
        self.attn_dropout = nn.Dropout(config.dropout)

        self.mlp = nn.Sequential(
            nn.Linear(config.d_model, config.d_feedforward, bias=True),
            RITAGELU(),
            nn.Linear(config.d_feedforward, config.d_model, bias=True),
        )
        self.mlp_norm = nn.LayerNorm(config.d_model)
        self.mlp_dropout = nn.Dropout(config.dropout)
        
    def forward(
        self,
        x: torch.FloatTensor,
        attn_mask: torch.BoolTensor,
        padding_mask: Optional[torch.BoolTensor] = None,
    ) -> torch.FloatTensor:
        y = self.attn_norm(x)
        y = self.self_attention(y, attn_mask=attn_mask, padding_mask=padding_mask)
        x = x + self.attn_dropout(y)

        y = self.mlp_norm(x)
        y = self.mlp(y)
        x = x + self.mlp_dropout(y)
        return x
    
class RITAModel(PreTrainedModel):
    config_class = RITAConfig
    def __init__(
        self,
        config
    ):
        super().__init__(config)
        self.embedding = nn.Embedding(config.vocab_size, config.d_model)
        self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
        self.final_norm = nn.LayerNorm(config.d_model)
        self.projector = nn.Linear(config.d_model, config.vocab_size, bias = False)

    def forward(self, input_ids, attn_mask=None, padding_mask=None, return_hidden=False) -> torch.FloatTensor:
        x = self.embedding(input_ids)  # N x L x D
        if attn_mask == None:
            attn_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device)
        for layer in self.layers:
            x = layer(x, attn_mask=attn_mask, padding_mask=padding_mask)
        x = self.final_norm(x)  # N x L x D

        if return_hidden:
            return x
        else:
            return self.projector(x)

    #Some common HF functions.
    def get_input_embeddings(self):
        return self.embedding

    def set_input_embeddings(self, new_embeddings):
        self.embedding = new_embeddings

    def get_output_embeddings(self):
        return self.projector

    def set_output_embeddings(self, new_projector):
        self.projector = new_projector