File size: 17,825 Bytes
5b0200e
 
 
 
 
 
 
 
b9e9a88
5b0200e
 
b9e9a88
f4beaf9
b9e9a88
5b0200e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9a88
5b0200e
 
b9e9a88
 
 
5b0200e
 
 
 
 
 
 
 
 
f4beaf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0200e
f4beaf9
5b0200e
 
b9e9a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4beaf9
 
 
 
 
 
 
 
 
 
 
 
b9e9a88
f4beaf9
 
5b0200e
 
b9e9a88
5b0200e
 
b9e9a88
5b0200e
 
b9e9a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0200e
b9e9a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss

from transformers.modeling_outputs import (
    BaseModelOutput,
    CausalLMOutput,
    SequenceClassifierOutput
)

from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .rita_configuration import RITAConfig
import torch.nn.functional as F
logger = logging.get_logger(__name__)

@torch.jit.script
def RITA_gelu(hidden_states):
    return hidden_states * 0.5 * (1.0 + torch.tanh(0.79788456 * hidden_states * (1 + 0.044715 * hidden_states * hidden_states)))

class RITAGELU(nn.Module):
    def __init__(self):
        super().__init__()
    
    def forward(self, hidden_states):
        return RITA_gelu(hidden_states)

def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=x1.ndim - 1)

class RotaryEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.d_model % config.num_heads == 0
        
        self.d_model = config.d_model
        self.num_heads = config.num_heads
        self.max_seq_len = config.max_seq_len
        
        head_dim = self.d_model // self.num_heads
        inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim))
        self.register_buffer('inv_freq', inv_freq)
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None
    
    def forward(self, x: torch.FloatTensor, seq_dim=1) -> torch.FloatTensor:
        seq_len = x.shape[seq_dim]
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.cos_cached = emb.cos()[None, None, :, :]
            self.sin_cached = emb.sin()[None, None, :, :]
        return self.cos_cached, self.sin_cached
    
    def apply_rotary_pos_emb(self, q, k, cos, sin):
        return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)

    
class SelfAttention(nn.Module):
    """Implementation of MultiHeadAttention following `Karpathy's MinGPT <https://github.com/karpathy/minGPT>`_.
    modified to use rotary embeddings.
    
    Parameters
    ----------
    d_model: int,
         total dimension of the model.
    num_heads: int,
        number of parallel attention heads.
    num_layers: int,
        number of layers in the model, used for the Megatron-like init.
    rotaty_embedding: Optional[Block], default None,
        a RotaryEmbedding Block to add positionnal information in Queries and Keys
    dropout: float, default 0.1,
        amount of dropout on the attention weights.
    sigma: float, default 0.02,
        standard deviation used for the init.
    trainable: bool, default True,
        if False, the Module parameters will be hidden from the optimizer.
    """

    def __init__(
        self,
        d_model: int,
        num_heads: int,
        num_layers: int,
        rotary_embedding= None,
        dropout: float = 0.1,
        sigma=0.02,
        use_cache: bool = False,
        bias=True,
    ):
        super().__init__()
        assert d_model % num_heads == 0
        self.d_model = d_model
        self.num_heads = num_heads
        self.head_dim = self.d_model // self.num_heads
        self.num_layers = num_layers
        self.dropout = dropout
        self.sigma = sigma
        self.bias = bias

        # key, query, value projections for all heads
        self.key = nn.Linear(d_model, d_model, bias=bias)
        self.query = nn.Linear(d_model, d_model, bias=bias)
        self.value = nn.Linear(d_model, d_model, bias=bias)
        # regularization
        self.attn_drop = nn.Dropout(dropout)
        self.resid_drop = nn.Dropout(dropout)
        # output projection
        self.proj = nn.Linear(d_model, d_model, bias=bias)

        self.rotary_embedding = rotary_embedding
        self.layer_id = None  # will be set by the Transformer itself
        self.use_cache = use_cache
        self.qkv = None
        self.bias = bias

    def forward(
        self,
        x,
        attn_mask: Optional[torch.BoolTensor] = None,
        padding_mask: Optional[torch.BoolTensor] = None,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:

        N, L, D = x.size()  # Batch_size, Context_size, d_model

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        k = (
            self.key(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
        )  # (N, nh, L, hs)
        q = (
            self.query(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
        )  # (N, nh, L, hs)
        v = (
            self.value(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
        )  # (N, nh, L, hs)
        
        if self.rotary_embedding is not None:
            cos, sin = self.rotary_embedding(x)
            q, k = self.rotary_embedding.apply_rotary_pos_emb(q, k, cos, sin)

        # causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        
        if attn_mask is not None:
            att[:,:,-L:, -L: ].masked_fill_(attn_mask.view(1, 1, L, L), float("-inf"))
            
        att = (
            att.transpose(0, 2)
            .masked_fill(padding_mask.view(1, 1, N, L), float("-inf"))
            .transpose(0, 2)
            if padding_mask is not None
            else att
        )
        
        att = F.softmax(att, dim=-1)
        att = self.attn_drop(att)
        y = att @ v  # (N, nh, L, L) x (N, nh, L, hs) -> (N, nh, L, hs)
        y = (
            y.transpose(1, 2).contiguous().view(N, L, D)
        )  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y))
        return y

class DecoderLayer(nn.Module):
    """Transformer block containing the self-attention module and the feedfoward module."""

    def __init__(
        self, config
    ):
        super().__init__()
        self.self_attention = SelfAttention(config.d_model, config.num_heads, config.dropout, rotary_embedding=RotaryEmbedding(config))
        self.attn_norm = nn.LayerNorm(config.d_model)
        self.attn_dropout = nn.Dropout(config.dropout)

        self.mlp = nn.Sequential(
            nn.Linear(config.d_model, config.d_feedforward, bias=True),
            RITAGELU(),
            nn.Linear(config.d_feedforward, config.d_model, bias=True),
        )
        self.mlp_norm = nn.LayerNorm(config.d_model)
        self.mlp_dropout = nn.Dropout(config.dropout)
        
    def forward(
        self,
        x: torch.FloatTensor,
        attn_mask: torch.BoolTensor,
        padding_mask: Optional[torch.BoolTensor] = None,
    ) -> torch.FloatTensor:
        y = self.attn_norm(x)
        y = self.self_attention(y, attn_mask=attn_mask, padding_mask=padding_mask)
        x = x + self.attn_dropout(y)

        y = self.mlp_norm(x)
        y = self.mlp(y)
        x = x + self.mlp_dropout(y)
        return x

class RITAModel(PreTrainedModel):
    config_class = RITAConfig
    base_model_prefix = "transformer"
    is_parallelizable = False
    
    def __init__(
        self,
        config
    ):
        super().__init__(config)
        self.embedding = nn.Embedding(config.vocab_size, config.d_model)
        self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
        self.final_norm = nn.LayerNorm(config.d_model)

    def forward(
        self,
        input_ids=None,
        past_key_values=None,  # NOT USED
        attention_mask=None,
        token_type_ids=None, # NOT USED
        position_ids=None, # NOT USED
        head_mask=None, # NOT USED
        inputs_embeds=None,
        encoder_hidden_states=None,  # NOT USED
        encoder_attention_mask=None, # NOT USED
        labels=None,
        use_cache=None, # NOT USED
        output_attentions=None, # NOT USED
        output_hidden_states=None, # NOT USED
        return_dict=None # NOT USED
        ) -> torch.FloatTensor:
        
        if inputs_embeds == None:
            x = self.embedding(input_ids)  # N x L x D
        else:
            x = inputs_embeds
        if attention_mask == None:
            attention_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device)
        for layer in self.layers:
            x = layer(x, attn_mask=attention_mask)
        x = self.final_norm(x)  # N x L x D

        return BaseModelOutput(
            hidden_states=x,
        )

    #Some common HF functions.
    def get_input_embeddings(self):
        return self.embedding

    def set_input_embeddings(self, new_embeddings):
        self.embedding = new_embeddings

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class RITAModelForCausalLM(PreTrainedModel):
    config_class = RITAConfig
    base_model_prefix = "transformer"
    is_parallelizable = False

    def __init__(
        self,
        config
    ):
        super().__init__(config)
        self.transformer = RITAModel(config)
        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

    def forward(
        self,
        input_ids=None,
        past_key_values=None,  # NOT USED
        attention_mask=None,
        token_type_ids=None, # NOT USED
        position_ids=None, # NOT USED
        head_mask=None, # NOT USED
        inputs_embeds=None,
        encoder_hidden_states=None,  # NOT USED
        encoder_attention_mask=None, # NOT USED
        labels=None,
        use_cache=None, # NOT USED
        output_attentions=None, # NOT USED
        output_hidden_states=None, # NOT USED
        return_dict=None # NOT USED
        ) -> torch.FloatTensor:
        
        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        
        logits = self.lm_head(transformer_outputs.hidden_states)
        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        return CausalLMOutput(
            loss=loss,
            logits=logits,
            hidden_states=transformer_outputs.hidden_states,
        )

    #Some common HF functions.
    def get_input_embeddings(self):
        return self.transformer.embedding

    def set_input_embeddings(self, new_embeddings):
        self.transformer.embedding = new_embeddings

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, lm_head):
        self.lm_head = lm_head

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class RITAModelForSequenceClassification(PreTrainedModel):
    config_class = RITAConfig
    base_model_prefix = "transformer"
    is_parallelizable = False

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = RITAModel(config)
        self.score = nn.Linear(config.d_model, self.num_labels, bias=False)

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size, sequence_length = input_ids.shape[:2]
        else:
            batch_size, sequence_length = inputs_embeds.shape[:2]

        assert (
            self.config.pad_token_id is not None or batch_size == 1
        ), "Cannot handle batch sizes > 1 if no padding token is defined."
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                    f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
                )

        pooled_logits = logits[torch.arange(batch_size, device=self.device), sequence_lengths]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=pooled_logits,
        )
        
    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)