my_awesome_ner-token_classification_v1.0.7-5

This model is a fine-tuned version of lilyyellow/my_awesome_ner-token_classification_v1.0.7-5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6412
  • Age: {'precision': 0.8231292517006803, 'recall': 0.9166666666666666, 'f1': 0.8673835125448027, 'number': 132}
  • Datetime: {'precision': 0.7318548387096774, 'recall': 0.7378048780487805, 'f1': 0.7348178137651821, 'number': 984}
  • Disease: {'precision': 0.677536231884058, 'recall': 0.6607773851590106, 'f1': 0.669051878354204, 'number': 283}
  • Event: {'precision': 0.30604982206405695, 'recall': 0.32575757575757575, 'f1': 0.3155963302752293, 'number': 264}
  • Gender: {'precision': 0.7419354838709677, 'recall': 0.8070175438596491, 'f1': 0.7731092436974789, 'number': 114}
  • Law: {'precision': 0.5209003215434084, 'recall': 0.6403162055335968, 'f1': 0.5744680851063829, 'number': 253}
  • Location: {'precision': 0.7192796610169492, 'recall': 0.7424822307271733, 'f1': 0.7306967984934087, 'number': 1829}
  • Organization: {'precision': 0.656473649967469, 'recall': 0.7176386913229018, 'f1': 0.6856948691811077, 'number': 1406}
  • Person: {'precision': 0.7022955523672884, 'recall': 0.7333333333333333, 'f1': 0.717478930010993, 'number': 1335}
  • Phone: {'precision': 0.8837209302325582, 'recall': 0.9743589743589743, 'f1': 0.9268292682926831, 'number': 78}
  • Product: {'precision': 0.4470046082949309, 'recall': 0.37890625, 'f1': 0.4101479915433404, 'number': 256}
  • Quantity: {'precision': 0.5621890547263682, 'recall': 0.6231617647058824, 'f1': 0.5911072362685265, 'number': 544}
  • Role: {'precision': 0.47593582887700536, 'recall': 0.5144508670520231, 'f1': 0.49444444444444446, 'number': 519}
  • Transportation: {'precision': 0.5028571428571429, 'recall': 0.6376811594202898, 'f1': 0.5623003194888179, 'number': 138}
  • Overall Precision: 0.6503
  • Overall Recall: 0.6868
  • Overall F1: 0.6680
  • Overall Accuracy: 0.8884

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Age Datetime Disease Event Gender Law Location Organization Person Phone Product Quantity Role Transportation Overall Precision Overall Recall Overall F1 Overall Accuracy
0.132 1.9991 2313 0.4438 {'precision': 0.8482758620689655, 'recall': 0.9318181818181818, 'f1': 0.8880866425992779, 'number': 132} {'precision': 0.7001897533206831, 'recall': 0.75, 'f1': 0.7242394504416094, 'number': 984} {'precision': 0.7104247104247104, 'recall': 0.6501766784452296, 'f1': 0.6789667896678967, 'number': 283} {'precision': 0.30029154518950435, 'recall': 0.39015151515151514, 'f1': 0.3393739703459638, 'number': 264} {'precision': 0.7647058823529411, 'recall': 0.7982456140350878, 'f1': 0.7811158798283262, 'number': 114} {'precision': 0.5693430656934306, 'recall': 0.616600790513834, 'f1': 0.5920303605313093, 'number': 253} {'precision': 0.7090248962655602, 'recall': 0.7474029524330235, 'f1': 0.7277082778812883, 'number': 1829} {'precision': 0.6387607119314437, 'recall': 0.6891891891891891, 'f1': 0.6630174478275744, 'number': 1406} {'precision': 0.6537414965986394, 'recall': 0.7198501872659177, 'f1': 0.685204991087344, 'number': 1335} {'precision': 0.7888888888888889, 'recall': 0.9102564102564102, 'f1': 0.8452380952380951, 'number': 78} {'precision': 0.37606837606837606, 'recall': 0.34375, 'f1': 0.35918367346938773, 'number': 256} {'precision': 0.6036217303822937, 'recall': 0.5514705882352942, 'f1': 0.5763688760806917, 'number': 544} {'precision': 0.4448462929475588, 'recall': 0.47398843930635837, 'f1': 0.458955223880597, 'number': 519} {'precision': 0.4489795918367347, 'recall': 0.6376811594202898, 'f1': 0.5269461077844311, 'number': 138} 0.6320 0.6742 0.6524 0.8866
0.1236 3.9983 4626 0.4916 {'precision': 0.8299319727891157, 'recall': 0.9242424242424242, 'f1': 0.8745519713261649, 'number': 132} {'precision': 0.6889952153110048, 'recall': 0.7317073170731707, 'f1': 0.7097092163627403, 'number': 984} {'precision': 0.6178343949044586, 'recall': 0.6855123674911661, 'f1': 0.6499162479061976, 'number': 283} {'precision': 0.26216216216216215, 'recall': 0.36742424242424243, 'f1': 0.305993690851735, 'number': 264} {'precision': 0.7711864406779662, 'recall': 0.7982456140350878, 'f1': 0.7844827586206897, 'number': 114} {'precision': 0.5325077399380805, 'recall': 0.6798418972332015, 'f1': 0.5972222222222223, 'number': 253} {'precision': 0.6995329527763363, 'recall': 0.7370147621651175, 'f1': 0.7177848775292864, 'number': 1829} {'precision': 0.6458598726114649, 'recall': 0.7211948790896159, 'f1': 0.6814516129032258, 'number': 1406} {'precision': 0.64526588845655, 'recall': 0.7453183520599251, 'f1': 0.691692735488356, 'number': 1335} {'precision': 0.9156626506024096, 'recall': 0.9743589743589743, 'f1': 0.9440993788819876, 'number': 78} {'precision': 0.3524904214559387, 'recall': 0.359375, 'f1': 0.3558994197292069, 'number': 256} {'precision': 0.5358851674641149, 'recall': 0.6176470588235294, 'f1': 0.5738684884713919, 'number': 544} {'precision': 0.4106060606060606, 'recall': 0.5221579961464354, 'f1': 0.45971162001696353, 'number': 519} {'precision': 0.5416666666666666, 'recall': 0.6594202898550725, 'f1': 0.5947712418300652, 'number': 138} 0.6138 0.6907 0.6500 0.8800
0.0909 5.9974 6939 0.5451 {'precision': 0.8413793103448276, 'recall': 0.9242424242424242, 'f1': 0.8808664259927798, 'number': 132} {'precision': 0.7414684591520165, 'recall': 0.7286585365853658, 'f1': 0.735007688364941, 'number': 984} {'precision': 0.7054263565891473, 'recall': 0.6431095406360424, 'f1': 0.6728280961182995, 'number': 283} {'precision': 0.33613445378151263, 'recall': 0.30303030303030304, 'f1': 0.3187250996015936, 'number': 264} {'precision': 0.7627118644067796, 'recall': 0.7894736842105263, 'f1': 0.7758620689655172, 'number': 114} {'precision': 0.5496688741721855, 'recall': 0.6561264822134387, 'f1': 0.5981981981981982, 'number': 253} {'precision': 0.7087024491922876, 'recall': 0.7435757244395844, 'f1': 0.7257203842049093, 'number': 1829} {'precision': 0.6441326530612245, 'recall': 0.7183499288762447, 'f1': 0.6792199058507061, 'number': 1406} {'precision': 0.6782246879334258, 'recall': 0.7325842696629213, 'f1': 0.7043572200216061, 'number': 1335} {'precision': 0.8941176470588236, 'recall': 0.9743589743589743, 'f1': 0.9325153374233129, 'number': 78} {'precision': 0.43564356435643564, 'recall': 0.34375, 'f1': 0.38427947598253276, 'number': 256} {'precision': 0.5513866231647635, 'recall': 0.6213235294117647, 'f1': 0.5842696629213483, 'number': 544} {'precision': 0.4785046728971963, 'recall': 0.4932562620423892, 'f1': 0.4857685009487666, 'number': 519} {'precision': 0.50920245398773, 'recall': 0.6014492753623188, 'f1': 0.5514950166112956, 'number': 138} 0.6483 0.6817 0.6646 0.8882
0.0531 7.9965 9252 0.6110 {'precision': 0.8356164383561644, 'recall': 0.9242424242424242, 'f1': 0.8776978417266188, 'number': 132} {'precision': 0.7186274509803922, 'recall': 0.7449186991869918, 'f1': 0.7315369261477046, 'number': 984} {'precision': 0.6541095890410958, 'recall': 0.6749116607773852, 'f1': 0.6643478260869565, 'number': 283} {'precision': 0.30662020905923343, 'recall': 0.3333333333333333, 'f1': 0.3194192377495463, 'number': 264} {'precision': 0.71875, 'recall': 0.8070175438596491, 'f1': 0.7603305785123967, 'number': 114} {'precision': 0.5838926174496645, 'recall': 0.6877470355731226, 'f1': 0.6315789473684211, 'number': 253} {'precision': 0.7138348237769595, 'recall': 0.7419354838709677, 'f1': 0.7276139410187666, 'number': 1829} {'precision': 0.6483375959079284, 'recall': 0.7211948790896159, 'f1': 0.6828282828282827, 'number': 1406} {'precision': 0.6911250873515025, 'recall': 0.7408239700374532, 'f1': 0.7151120751988431, 'number': 1335} {'precision': 0.8837209302325582, 'recall': 0.9743589743589743, 'f1': 0.9268292682926831, 'number': 78} {'precision': 0.45045045045045046, 'recall': 0.390625, 'f1': 0.4184100418410041, 'number': 256} {'precision': 0.5617792421746294, 'recall': 0.6268382352941176, 'f1': 0.5925282363162467, 'number': 544} {'precision': 0.4652777777777778, 'recall': 0.5163776493256262, 'f1': 0.48949771689497723, 'number': 519} {'precision': 0.49444444444444446, 'recall': 0.644927536231884, 'f1': 0.559748427672956, 'number': 138} 0.6448 0.6926 0.6678 0.8877
0.0441 9.9957 11565 0.6412 {'precision': 0.8231292517006803, 'recall': 0.9166666666666666, 'f1': 0.8673835125448027, 'number': 132} {'precision': 0.7318548387096774, 'recall': 0.7378048780487805, 'f1': 0.7348178137651821, 'number': 984} {'precision': 0.677536231884058, 'recall': 0.6607773851590106, 'f1': 0.669051878354204, 'number': 283} {'precision': 0.30604982206405695, 'recall': 0.32575757575757575, 'f1': 0.3155963302752293, 'number': 264} {'precision': 0.7419354838709677, 'recall': 0.8070175438596491, 'f1': 0.7731092436974789, 'number': 114} {'precision': 0.5209003215434084, 'recall': 0.6403162055335968, 'f1': 0.5744680851063829, 'number': 253} {'precision': 0.7192796610169492, 'recall': 0.7424822307271733, 'f1': 0.7306967984934087, 'number': 1829} {'precision': 0.656473649967469, 'recall': 0.7176386913229018, 'f1': 0.6856948691811077, 'number': 1406} {'precision': 0.7022955523672884, 'recall': 0.7333333333333333, 'f1': 0.717478930010993, 'number': 1335} {'precision': 0.8837209302325582, 'recall': 0.9743589743589743, 'f1': 0.9268292682926831, 'number': 78} {'precision': 0.4470046082949309, 'recall': 0.37890625, 'f1': 0.4101479915433404, 'number': 256} {'precision': 0.5621890547263682, 'recall': 0.6231617647058824, 'f1': 0.5911072362685265, 'number': 544} {'precision': 0.47593582887700536, 'recall': 0.5144508670520231, 'f1': 0.49444444444444446, 'number': 519} {'precision': 0.5028571428571429, 'recall': 0.6376811594202898, 'f1': 0.5623003194888179, 'number': 138} 0.6503 0.6868 0.6680 0.8884

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
133M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lilyyellow/my_awesome_ner-token_classification_v1.0.7-5

Unable to build the model tree, the base model loops to the model itself. Learn more.