File size: 9,392 Bytes
2c07d35
bd21def
2c07d35
 
 
 
 
 
 
 
 
 
 
 
bd21def
2c07d35
bd21def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c07d35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd21def
2c07d35
 
 
 
 
8eaaf8f
2c07d35
 
 
bd21def
 
 
 
2c07d35
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: NlpHUST/ner-vietnamese-electra-base
tags:
- generated_from_trainer
model-index:
- name: my_awesome_ner-token_classification_v1.0.7-5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_ner-token_classification_v1.0.7-5

This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3789
- Age: {'precision': 0.8503401360544217, 'recall': 0.946969696969697, 'f1': 0.8960573476702508, 'number': 132}
- Datetime: {'precision': 0.6935483870967742, 'recall': 0.7428861788617886, 'f1': 0.7173699705593719, 'number': 984}
- Disease: {'precision': 0.6895306859205776, 'recall': 0.6749116607773852, 'f1': 0.6821428571428573, 'number': 283}
- Event: {'precision': 0.3210702341137124, 'recall': 0.36363636363636365, 'f1': 0.3410301953818828, 'number': 264}
- Gender: {'precision': 0.7704918032786885, 'recall': 0.8245614035087719, 'f1': 0.7966101694915254, 'number': 114}
- Law: {'precision': 0.5617283950617284, 'recall': 0.7193675889328063, 'f1': 0.6308492201039861, 'number': 253}
- Location: {'precision': 0.6985105290190036, 'recall': 0.7435757244395844, 'f1': 0.7203389830508473, 'number': 1829}
- Organization: {'precision': 0.640555906506633, 'recall': 0.7211948790896159, 'f1': 0.6784877885580463, 'number': 1406}
- Person: {'precision': 0.7024147727272727, 'recall': 0.7408239700374532, 'f1': 0.7211082756106453, 'number': 1335}
- Phone: {'precision': 0.8705882352941177, 'recall': 0.9487179487179487, 'f1': 0.9079754601226994, 'number': 78}
- Product: {'precision': 0.3686274509803922, 'recall': 0.3671875, 'f1': 0.36790606653620356, 'number': 256}
- Quantity: {'precision': 0.5566502463054187, 'recall': 0.6231617647058824, 'f1': 0.588031222896791, 'number': 544}
- Role: {'precision': 0.4342560553633218, 'recall': 0.4836223506743738, 'f1': 0.45761166818596166, 'number': 519}
- Transportation: {'precision': 0.49122807017543857, 'recall': 0.6086956521739131, 'f1': 0.5436893203883495, 'number': 138}
- Overall Precision: 0.6348
- Overall Recall: 0.6913
- Overall F1: 0.6619
- Overall Accuracy: 0.8912

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Age                                                                                                     | Datetime                                                                                                 | Disease                                                                                                  | Event                                                                                                      | Gender                                                                                                   | Law                                                                                                      | Location                                                                                                  | Organization                                                                                              | Person                                                                                                    | Phone                                                                                                   | Product                                                                                          | Quantity                                                                                                | Role                                                                                                      | Transportation                                                                                            | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.29          | 1.9991 | 2313 | 0.3353          | {'precision': 0.8561643835616438, 'recall': 0.946969696969697, 'f1': 0.8992805755395684, 'number': 132} | {'precision': 0.707647628267183, 'recall': 0.7428861788617886, 'f1': 0.7248388696083291, 'number': 984}  | {'precision': 0.6946564885496184, 'recall': 0.6431095406360424, 'f1': 0.6678899082568808, 'number': 283} | {'precision': 0.34191176470588236, 'recall': 0.3522727272727273, 'f1': 0.34701492537313433, 'number': 264} | {'precision': 0.7560975609756098, 'recall': 0.8157894736842105, 'f1': 0.7848101265822786, 'number': 114} | {'precision': 0.5384615384615384, 'recall': 0.6363636363636364, 'f1': 0.5833333333333334, 'number': 253} | {'precision': 0.7157279489904357, 'recall': 0.7364680153089119, 'f1': 0.7259498787388844, 'number': 1829} | {'precision': 0.6326268464996788, 'recall': 0.7005689900426743, 'f1': 0.6648666891663854, 'number': 1406} | {'precision': 0.7298136645962733, 'recall': 0.704119850187266, 'f1': 0.7167365611894777, 'number': 1335}  | {'precision': 0.8072289156626506, 'recall': 0.8589743589743589, 'f1': 0.8322981366459627, 'number': 78} | {'precision': 0.425, 'recall': 0.265625, 'f1': 0.32692307692307687, 'number': 256}               | {'precision': 0.5797101449275363, 'recall': 0.5882352941176471, 'f1': 0.583941605839416, 'number': 544} | {'precision': 0.4549019607843137, 'recall': 0.44701348747591524, 'f1': 0.4509232264334305, 'number': 519} | {'precision': 0.5194805194805194, 'recall': 0.5797101449275363, 'f1': 0.5479452054794519, 'number': 138}  | 0.6518            | 0.6667         | 0.6592     | 0.8937           |
| 0.1806        | 3.9983 | 4626 | 0.3789          | {'precision': 0.8503401360544217, 'recall': 0.946969696969697, 'f1': 0.8960573476702508, 'number': 132} | {'precision': 0.6935483870967742, 'recall': 0.7428861788617886, 'f1': 0.7173699705593719, 'number': 984} | {'precision': 0.6895306859205776, 'recall': 0.6749116607773852, 'f1': 0.6821428571428573, 'number': 283} | {'precision': 0.3210702341137124, 'recall': 0.36363636363636365, 'f1': 0.3410301953818828, 'number': 264}  | {'precision': 0.7704918032786885, 'recall': 0.8245614035087719, 'f1': 0.7966101694915254, 'number': 114} | {'precision': 0.5617283950617284, 'recall': 0.7193675889328063, 'f1': 0.6308492201039861, 'number': 253} | {'precision': 0.6985105290190036, 'recall': 0.7435757244395844, 'f1': 0.7203389830508473, 'number': 1829} | {'precision': 0.640555906506633, 'recall': 0.7211948790896159, 'f1': 0.6784877885580463, 'number': 1406}  | {'precision': 0.7024147727272727, 'recall': 0.7408239700374532, 'f1': 0.7211082756106453, 'number': 1335} | {'precision': 0.8705882352941177, 'recall': 0.9487179487179487, 'f1': 0.9079754601226994, 'number': 78} | {'precision': 0.3686274509803922, 'recall': 0.3671875, 'f1': 0.36790606653620356, 'number': 256} | {'precision': 0.5566502463054187, 'recall': 0.6231617647058824, 'f1': 0.588031222896791, 'number': 544} | {'precision': 0.4342560553633218, 'recall': 0.4836223506743738, 'f1': 0.45761166818596166, 'number': 519} | {'precision': 0.49122807017543857, 'recall': 0.6086956521739131, 'f1': 0.5436893203883495, 'number': 138} | 0.6348            | 0.6913         | 0.6619     | 0.8912           |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1