my_awesome_billsum_model_82
This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2651
- Rouge1: 0.9769
- Rouge2: 0.8861
- Rougel: 0.9414
- Rougelsum: 0.9398
- Gen Len: 4.9583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 12 | 0.1788 | 0.9675 | 0.8359 | 0.9136 | 0.9111 | 4.9792 |
No log | 2.0 | 24 | 0.1578 | 0.9706 | 0.8564 | 0.9219 | 0.9199 | 5.0 |
No log | 3.0 | 36 | 0.1606 | 0.974 | 0.8654 | 0.9317 | 0.9307 | 4.9375 |
No log | 4.0 | 48 | 0.1720 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 5.0 | 60 | 0.1800 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 6.0 | 72 | 0.1871 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 7.0 | 84 | 0.1840 | 0.974 | 0.8654 | 0.9317 | 0.9307 | 4.9375 |
No log | 8.0 | 96 | 0.1802 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 9.0 | 108 | 0.1672 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 10.0 | 120 | 0.1875 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 11.0 | 132 | 0.2060 | 0.9728 | 0.8655 | 0.9285 | 0.927 | 4.9792 |
No log | 12.0 | 144 | 0.2068 | 0.9728 | 0.8655 | 0.9285 | 0.927 | 4.9792 |
No log | 13.0 | 156 | 0.2064 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 14.0 | 168 | 0.2066 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 15.0 | 180 | 0.1867 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 16.0 | 192 | 0.1947 | 0.974 | 0.8654 | 0.9317 | 0.9307 | 4.9375 |
No log | 17.0 | 204 | 0.1979 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 18.0 | 216 | 0.1971 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 19.0 | 228 | 0.1865 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 20.0 | 240 | 0.1757 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 21.0 | 252 | 0.1735 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 22.0 | 264 | 0.1846 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 23.0 | 276 | 0.2039 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 24.0 | 288 | 0.2251 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 25.0 | 300 | 0.2272 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 26.0 | 312 | 0.2165 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 27.0 | 324 | 0.2202 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 28.0 | 336 | 0.2166 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 29.0 | 348 | 0.2151 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 30.0 | 360 | 0.2151 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 31.0 | 372 | 0.2136 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 32.0 | 384 | 0.2206 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 33.0 | 396 | 0.2233 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 34.0 | 408 | 0.2220 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 35.0 | 420 | 0.2263 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 36.0 | 432 | 0.2298 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 37.0 | 444 | 0.2413 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 38.0 | 456 | 0.2407 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 39.0 | 468 | 0.2407 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 40.0 | 480 | 0.2420 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
No log | 41.0 | 492 | 0.2424 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 42.0 | 504 | 0.2442 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 43.0 | 516 | 0.2466 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 44.0 | 528 | 0.2416 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 45.0 | 540 | 0.2442 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 46.0 | 552 | 0.2457 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 47.0 | 564 | 0.2383 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 48.0 | 576 | 0.2481 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 49.0 | 588 | 0.2512 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 50.0 | 600 | 0.2510 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 51.0 | 612 | 0.2516 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 52.0 | 624 | 0.2491 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 53.0 | 636 | 0.2480 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 54.0 | 648 | 0.2493 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 55.0 | 660 | 0.2417 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 56.0 | 672 | 0.2320 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 57.0 | 684 | 0.2270 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 58.0 | 696 | 0.2351 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 59.0 | 708 | 0.2414 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 60.0 | 720 | 0.2490 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 61.0 | 732 | 0.2489 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 62.0 | 744 | 0.2496 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 63.0 | 756 | 0.2505 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 64.0 | 768 | 0.2515 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 65.0 | 780 | 0.2511 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 66.0 | 792 | 0.2521 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 67.0 | 804 | 0.2530 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 68.0 | 816 | 0.2536 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 69.0 | 828 | 0.2535 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 70.0 | 840 | 0.2575 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 71.0 | 852 | 0.2593 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 72.0 | 864 | 0.2588 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 73.0 | 876 | 0.2654 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 74.0 | 888 | 0.2622 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 75.0 | 900 | 0.2597 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 76.0 | 912 | 0.2586 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 77.0 | 924 | 0.2566 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 78.0 | 936 | 0.2554 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 79.0 | 948 | 0.2560 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 80.0 | 960 | 0.2582 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 81.0 | 972 | 0.2614 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 82.0 | 984 | 0.2652 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0483 | 83.0 | 996 | 0.2685 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 84.0 | 1008 | 0.2696 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 85.0 | 1020 | 0.2700 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 86.0 | 1032 | 0.2715 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 87.0 | 1044 | 0.2697 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 88.0 | 1056 | 0.2692 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 89.0 | 1068 | 0.2666 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 90.0 | 1080 | 0.2666 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 91.0 | 1092 | 0.2671 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 92.0 | 1104 | 0.2665 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 93.0 | 1116 | 0.2655 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 94.0 | 1128 | 0.2646 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 95.0 | 1140 | 0.2652 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 96.0 | 1152 | 0.2656 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 97.0 | 1164 | 0.2657 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 98.0 | 1176 | 0.2656 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 99.0 | 1188 | 0.2654 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
0.0231 | 100.0 | 1200 | 0.2651 | 0.9769 | 0.8861 | 0.9414 | 0.9398 | 4.9583 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 107
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for limaatulya/my_awesome_billsum_model_82
Base model
google-t5/t5-small