|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- ctranslate2 |
|
- fastchat-t5-3b |
|
- quantization |
|
- int8 |
|
--- |
|
|
|
# Model Card for FastChat-T5 3B Q8 |
|
|
|
The model is quantized version of the [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5-3b-v1.0) with int8 quantization. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
The model being quantized using [CTranslate2](https://opennmt.net/CTranslate2/) with the following command: |
|
|
|
``` |
|
ct2-transformers-converter --model lmsys/fastchat-t5-3b --output_dir lmsys/fastchat-t5-3b-ct2 --copy_files added_tokens.json tokenizer_config.json special_tokens_map.json spiece.model --quantization int8 --force --low_cpu_mem_usage |
|
``` |
|
|
|
If you want to perform the quantization yourself, you need to install the following dependencies: |
|
|
|
``` |
|
pip install -qU ctranslate2 transformers[torch] sentencepiece accelerate |
|
``` |
|
|
|
- **Shared by:** Lim Chee Kin |
|
- **License:** Apache 2.0 |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
import ctranslate2 |
|
import transformers |
|
|
|
translator = ctranslate2.Translator("limcheekin/fastchat-t5-3b-ct2") |
|
tokenizer = transformers.AutoTokenizer.from_pretrained("limcheekin/fastchat-t5-3b-ct2") |
|
|
|
input_text = "translate English to German: The house is wonderful." |
|
input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_text)) |
|
|
|
results = translator.translate_batch([input_tokens]) |
|
|
|
output_tokens = results[0].hypotheses[0] |
|
output_text = tokenizer.decode(tokenizer.convert_tokens_to_ids(output_tokens)) |
|
|
|
print(output_text) |
|
``` |
|
|
|
The code is taken from https://opennmt.net/CTranslate2/guides/transformers.html#t5. |
|
|
|
The key method of the code above is `translate_batch`, you can find out [its supported parameters here](https://opennmt.net/CTranslate2/python/ctranslate2.Translator.html#ctranslate2.Translator.translate_batch). |
|
|