|
--- |
|
license: apache-2.0 |
|
inference: false |
|
language: ja |
|
--- |
|
|
|
# japanese-large-lm-1.7b-instruction-sft-4bit-32g-actorder_False |
|
|
|
This repository provides a 1.7B parameters Japanese language **quantized** model, fine-tuned and trained by [LINE Corporation](https://linecorp.com/ja/). |
|
|
|
## For Japanese |
|
|
|
詳細な説明や実験に関しては「[【インターンレポート】量子化による大規模言語モデル軽量化の効果測定](https://engineering.linecorp.com/ja/blog/quantization-lightweighting-llms)」をご覧ください。 |
|
|
|
## How to use |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-1.7b-instruction-sft", use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-1.7b-instruction-sft-4bit-32g-actorder_False") |
|
|
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) |
|
|
|
input_text = """四国の県名を全て列挙してください。""" |
|
text = generator( |
|
f"ユーザー: {input_text}\nシステム: ", |
|
max_length = 256, |
|
do_sample = True, |
|
temperature = 0.7, |
|
top_p = 0.9, |
|
top_k = 0, |
|
repetition_penalty = 1.1, |
|
num_beams = 1, |
|
pad_token_id = tokenizer.pad_token_id, |
|
num_return_sequences = 1, |
|
) |
|
print(text) # [{'generated_text': 'ユーザー: 四国の県名を全て列挙してください。\nシステム: 高知県、徳島県、香川県、愛媛県'}] |
|
``` |
|
|
|
## Tokenization |
|
|
|
We use a sentencepiece tokenizer with a unigram language model and byte-fallback. |
|
We **do not** apply pre-tokenization with Japanese tokenizer. |
|
Thus, a user may directly feed raw sentences into the tokenizer. |
|
|
|
## License |
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |