RankMistral100 / README.md
liuwenhan's picture
Update README.md
cb1926d verified
metadata
license: mit
language:
  - en
base_model:
  - mistralai/Mistral-7B-Instruct-v0.3

Model Information

We release the full ranking model RankMistral100 distilled from GPT-4o-2024-08-06 used in Sliding Windows Are Not the End: Exploring Full Ranking with Long-Context Large Language Models.

Useful links: 📝 Paper • 🤗 Dataset • 🧩 Github

Training framework

Our full ranking model aims to directly rerank 100 passages at a time, abandoning the sliding window strategy. We propose a multi-pass sliding window approach for generating the full ranking list as label and design a importance-aware training loss for optimization. image-20241218200920116

Backbone Model

RankMistral100 is finetuned from https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3.

Performance

We surpuss the strong baseline RankZephyr with 1.2 points on BEIR Avg.

Models Covid DBPedia SciFact NFCorpus Signal Robust04 Touche News Avg.
BM25 59.47 31.80 67.89 33.75 33.04 40.70 44.22 39.52 43.80
monoBERT (340M) 73.45 41.69 62.22 34.92 30.63 44.21 30.26 47.03 45.55
monoT5 (220M) 75.94 42.43 65.07 35.42 31.20 44.15 30.35 46.98 46.44
RankVicuna (7B) 79.19 44.51 70.67 34.51 34.24 48.33 33.00 47.15 48.95
RankZepeyer (7B) 82.92 44.42 75.42 38.26 31.41 53.73 30.22 52.80 51.15
RankMistral100 (7B) 82.24 43.54 77.04 39.14 33.99 57.91 34.63 50.59 52.40

🌹 If you use this model, please ✨star our GitHub repository to support us. Your star means a lot!