See axolotl config
axolotl version: 0.4.0
adapter: qlora
base_model: mistralai/Mixtral-8x22B-Instruct-v0.1
bf16: true
chat_template: inst
dataset_prepared_path: last_run_prepared
datasets:
- conversation: mistral
path: ./data/with_function_response/original_clean/function_used_training.jsonl
type: sharegpt
- conversation: mistral
path: ./data/with_function_response/original_clean/function_not_used_training.jsonl
type: sharegpt
- conversation: mistral
path: ./data/with_function_response/parallel_call/parallel_data_training.jsonl
type: sharegpt
debug: null
# eval_max_new_tokens: 256
# eval_steps: 0.2
# eval_table_size: null
flash_attention: true
fp16: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: liuylhf/parallel-call-original-4-epoch-mixtral-8x22b-instruct
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_model_dir: null
lora_r: 32
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
micro_batch_size: 2
model_config:
output_router_logits: true
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: paged_adamw_8bit
output_dir: model
pad_to_sequence_len: true
sample_packing: true
save_steps: 0.125
sequence_len: 4096
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0
wandb_log_model: end
wandb_name: more-tools
wandb_project: function-call
warmup_steps: 10
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_transformer_layer_cls_to_wrap: MixtralSparseMoeBlock
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
parallel-call-original-4-epoch-mixtral-8x22b-instruct
This model is a fine-tuned version of mistralai/Mixtral-8x22B-Instruct-v0.1 on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 0
Model tree for liuylhf/parallel-call-original-4-epoch-mixtral-8x22b-instruct
Base model
mistralai/Mixtral-8x22B-v0.1
Finetuned
mistralai/Mixtral-8x22B-Instruct-v0.1