SetFit with microsoft/Multilingual-MiniLM-L12-H384

This is a SetFit model that can be used for Text Classification. This SetFit model uses microsoft/Multilingual-MiniLM-L12-H384 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • '#மக்களின்_சின்னம்_மைக் \n#Mike_VoiceOfPeople \n#Seeman\n\nகனிம வளங்கள் \nயாரு யாரால் கொள்ளை அடிக்க பட்டது ?\n\n#பாசிச_பாஜக #திருட்டு_திமுக \n#அடிமைஅதிமுக #செத்துபோன_காங்கிரஸ் '
  • 'கனவுகளை வெளிப்படுத்தும் \nதலைவர்களுடன் \nஎங்களின்\nசின்னம் 🎙️.\n\n#மக்களின்_சின்னம்_மைக்.\n\n~\n#சீமானின்_சின்னம்_ஒலிவாங்கி 🎙️'
  • 'டேய் உபிஸ், எனக்கு ஒரு\nஉண்மை தெரிஞ்சாகணும்...\n\nஇந்த பொட்டி கோவாலு அப்போ\nபேசுனது பொய்யா இல்ல இப்போ\nபேசுறது பொய்யா!? 😬😂\n#NoVoteToDMK\n\n#Katchatheevu #IPL2024 #2GScam\n#SenthilBalaji #Drug_Mafia_DMK\n#PappuDiwas #EDRaid #DMKFailsTN '
0
  • 'கட்சி மாறிய 19 Ex.MLA க்கள், ஸ்டாலினுக்கு முத்தம், TR பாலுவின் கணக்கு
6
  • 'ஜீவநதி ப்ரியன்\xa0 mm ok'
  • 'Siva Siva\xa0 என்னது'
  • 'கவலைகள் மறந்து சிரிக்கTMP prank paarunkaEnjoy pannunka'
3
  • '#நாம்தமிழர் கட்சிக்கு ஆதரவாக லண்டன் ஈழதமிழர்கள்..\n\nநாம்தமிழர் என்பது அனைத்து உலக தமிழர்களுக்கானது..\n\n#ParliamentElection2024\n\n#சீமானின்_சின்னம்_ஒலிவாங்கி\n#NTK_Symbol_Mike '
  • 'ஒவ்வொரு வாக்கும் நம் இனம் காக்கும்\n#மக்களின்_சின்னம்_மைக் '
  • 'சகோதரர் ராகுல் காந்திக்கு ஜூன் 4ல் இனிப்பான வெற்றியை தருவோம்- முதலமைச்சர் மு.க.ஸ்டாலின்\n\n#TNCM #MKStalin #sweetvictory #RahulGandhi #DMK #Congress #Tamilnadunews #Jewellery #Jewelleryseized #Madurai #Siddaramaiah #KarnatakaCM #NDA #Congress #ipl #ipl2024 #PunjabvsRajasthan #Cricket #Sportsnews #MMNews #Maalaimalar'
4
  • 'அக் - 17-ம் தேதி 52வது ஆண்டில் அடியெடுத்து வைக்கும் அதிமுக
1
  • 'ஜனநாயத்தின் நம் வாக்கு என்பது வலிமைமிக்க ஆயுதம்\nஅதை அநீதிக்கு எதிராக ஏந்துவோம்! \n\n \n\n#மக்களின்_சின்னம்_ஒலிவாங்கி #Mike_ThePeoplesChoice \n#Elections2024 \n#எங்கள்_வாக்கு_விற்பனைக்கு_அல்ல \n#MyVote_IsNot_ForSale '
  • 'அண்டப்புளுகு ஆகாசப்புளுகு திமுக.\n\nமக்கள எந்தளவுக்கு முட்டாள் பயலுக ன்னு நெனைக்கிறாய்ங்க?\n\n#DMKFailsTN'
  • 'கோவையில் நடைபெறும் பிரம்மாண்ட பொதுக்கூட்டத்தில் முதலமைச்சர் மு.க.ஸ்டாலின் மற்றும் ராகுல் காந்தி\n\n#Kovai #MKStalin #Rahul_Gandhi #DinakaranNews '
5
  • 'MGRன் அதிமுக இன்று இல்லை அதிமுக கோட்டையை தகர்த்த திமுக!\n\nFull video limk : \n\n#Nakkheeran #MKStalin #DMK '
  • 'ஜெயலலிதா ஆட்சியில் தமிழ்நாட்டிற்கு வர அஞ்சும் மோடி எடப்பாடி ஆட்சிக்காலத்திலும் வந்தது குறைவு..\nஆனால் ஸ்டாலின் ஆட்சிக்காலத்தில் வாரவிடுமுறை போல் அடிக்கடி தமிழ்நாடு வருகிறார். அது மட்டுமல்ல RSS ஊர்வலமும் நடக்கிறது. புரிகிறதா திமுக பிஜேபி கள்ள உறவு…'
  • 'கோவையில் முதலமைச்சர் மு.க.ஸ்டாலின், காங்கிரஸ் எம்.பி. ராகுல் காந்தி கூட்டாக தேர்தல் பரப்புரை!\n\n#Theekkathir

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("livinNector/tam-political-classification-setfit")
# Run inference
preds = model("\"பயனற்ற MP-யாக மாறன் இருக்கிறார்\"
#VinojPSelvam #dayanidhimaran #dmk
#bjp #CentralChennai ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 17.8534 348
Label Training Sample Count
0 1361
1 790
2 637
3 575
4 412
5 406
6 171

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 1
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: True
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0074 1 0.438 -
0.3676 50 0.3051 -
0.7353 100 0.2648 0.2556

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
16
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for livinNector/tam-political-classification-setfit

Finetuned
(23)
this model