factual-consistency-classification-ja-avgpool

This model is a fine-tuned version of line-corporation/line-distilbert-base-japanese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4881
  • Accuracy: 0.8223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: tpu
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 306 0.6837 0.7402
0.7763 2.0 612 0.6102 0.7734
0.7763 3.0 918 0.5782 0.7832
0.657 4.0 1224 0.5698 0.7949
0.6267 5.0 1530 0.5743 0.7793
0.6267 6.0 1836 0.5465 0.8066
0.6082 7.0 2142 0.5474 0.8066
0.6082 8.0 2448 0.5488 0.7949
0.5976 9.0 2754 0.5359 0.8125
0.5845 10.0 3060 0.5236 0.8086
0.5845 11.0 3366 0.5240 0.8027
0.5769 12.0 3672 0.5120 0.8125
0.5769 13.0 3978 0.5105 0.8125
0.5742 14.0 4284 0.5282 0.7969
0.5631 15.0 4590 0.5026 0.8086
0.5631 16.0 4896 0.5120 0.8125
0.5529 17.0 5202 0.4996 0.8145
0.5525 18.0 5508 0.4928 0.8145
0.5525 19.0 5814 0.5143 0.8027
0.5471 20.0 6120 0.4859 0.8203
0.5471 21.0 6426 0.4923 0.8145
0.5397 22.0 6732 0.4874 0.8242
0.5404 23.0 7038 0.4926 0.8184
0.5404 24.0 7344 0.4913 0.8223
0.5375 25.0 7650 0.4914 0.8223
0.5375 26.0 7956 0.4960 0.8047
0.5301 27.0 8262 0.4883 0.8203
0.5313 28.0 8568 0.4890 0.8223
0.5313 29.0 8874 0.4918 0.8203
0.5318 30.0 9180 0.4881 0.8223

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for liwii/factual-consistency-classification-ja-avgpool

Finetuned
(19)
this model