|
--- |
|
license: apache-2.0 |
|
base_model: line-corporation/line-distilbert-base-japanese |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: fc-binary-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fc-binary-model |
|
|
|
This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3003 |
|
- Accuracy: 0.8730 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: tpu |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 306 | 0.3749 | 0.8594 | |
|
| 0.4137 | 2.0 | 612 | 0.3596 | 0.8594 | |
|
| 0.4137 | 3.0 | 918 | 0.3459 | 0.8594 | |
|
| 0.383 | 4.0 | 1224 | 0.3423 | 0.8613 | |
|
| 0.3709 | 5.0 | 1530 | 0.3348 | 0.8613 | |
|
| 0.3709 | 6.0 | 1836 | 0.3292 | 0.8672 | |
|
| 0.364 | 7.0 | 2142 | 0.3275 | 0.8633 | |
|
| 0.364 | 8.0 | 2448 | 0.3235 | 0.8652 | |
|
| 0.3587 | 9.0 | 2754 | 0.3227 | 0.8633 | |
|
| 0.3509 | 10.0 | 3060 | 0.3182 | 0.8652 | |
|
| 0.3509 | 11.0 | 3366 | 0.3154 | 0.8730 | |
|
| 0.3531 | 12.0 | 3672 | 0.3132 | 0.8691 | |
|
| 0.3531 | 13.0 | 3978 | 0.3108 | 0.8691 | |
|
| 0.3478 | 14.0 | 4284 | 0.3112 | 0.875 | |
|
| 0.344 | 15.0 | 4590 | 0.3086 | 0.8711 | |
|
| 0.344 | 16.0 | 4896 | 0.3070 | 0.8730 | |
|
| 0.3386 | 17.0 | 5202 | 0.3047 | 0.875 | |
|
| 0.34 | 18.0 | 5508 | 0.3058 | 0.875 | |
|
| 0.34 | 19.0 | 5814 | 0.3054 | 0.875 | |
|
| 0.3356 | 20.0 | 6120 | 0.3043 | 0.8730 | |
|
| 0.3356 | 21.0 | 6426 | 0.3037 | 0.8770 | |
|
| 0.3331 | 22.0 | 6732 | 0.3034 | 0.875 | |
|
| 0.3356 | 23.0 | 7038 | 0.3022 | 0.875 | |
|
| 0.3356 | 24.0 | 7344 | 0.3019 | 0.8730 | |
|
| 0.3317 | 25.0 | 7650 | 0.3022 | 0.8711 | |
|
| 0.3317 | 26.0 | 7956 | 0.3017 | 0.8711 | |
|
| 0.3275 | 27.0 | 8262 | 0.3011 | 0.8770 | |
|
| 0.328 | 28.0 | 8568 | 0.3005 | 0.8730 | |
|
| 0.328 | 29.0 | 8874 | 0.3004 | 0.8730 | |
|
| 0.3315 | 30.0 | 9180 | 0.3003 | 0.8730 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|