metadata
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: gemma2b-summarize-claude3sonnet-8k
results: []
gemma2b-summarize-claude3sonnet-8k
This model is a fine-tuned version of google/gemma-2b on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 2.5421
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9711 | 0.9804 | 25 | 2.6222 |
1.3473 | 2.0 | 51 | 2.5571 |
1.1845 | 2.9804 | 76 | 2.5050 |
1.1242 | 4.0 | 102 | 2.5089 |
1.0937 | 4.9804 | 127 | 2.5239 |
1.0632 | 6.0 | 153 | 2.5275 |
1.0377 | 6.9804 | 178 | 2.5316 |
1.0278 | 8.0 | 204 | 2.5399 |
1.0176 | 8.9804 | 229 | 2.5422 |
1.007 | 9.8039 | 250 | 2.5421 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1