metadata
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: gemma2b-summarize-gpt4o-16k
results: []
gemma2b-summarize-gpt4o-16k
This model is a fine-tuned version of google/gemma-2b on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 2.5758
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8806 | 0.9863 | 36 | 2.6094 |
1.3239 | 2.0 | 73 | 2.5358 |
1.2327 | 2.9863 | 109 | 2.5192 |
1.1735 | 4.0 | 146 | 2.5203 |
1.1354 | 4.9863 | 182 | 2.5467 |
1.1015 | 6.0 | 219 | 2.5496 |
1.0858 | 6.9863 | 255 | 2.5680 |
1.0624 | 8.0 | 292 | 2.5723 |
1.0546 | 8.9863 | 328 | 2.5756 |
1.0623 | 9.8630 | 360 | 2.5758 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1