|
--- |
|
license: gemma |
|
library_name: peft |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: google/gemma-2b |
|
datasets: |
|
- llama-duo/synth_summarize_dataset_dedup |
|
model-index: |
|
- name: gemma2b-summarize-gpt4o-256k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma2b-summarize-gpt4o-256k |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the llama-duo/synth_summarize_dataset_dedup dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5990 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 3 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 96 |
|
- total_eval_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.1174 | 0.9974 | 292 | 2.4482 | |
|
| 1.0252 | 1.9983 | 585 | 2.4514 | |
|
| 0.988 | 2.9991 | 878 | 2.4683 | |
|
| 0.9741 | 4.0 | 1171 | 2.5000 | |
|
| 0.9342 | 4.9974 | 1463 | 2.5203 | |
|
| 0.9201 | 5.9983 | 1756 | 2.5519 | |
|
| 0.9054 | 6.9991 | 2049 | 2.5763 | |
|
| 0.8902 | 8.0 | 2342 | 2.5922 | |
|
| 0.8818 | 8.9974 | 2634 | 2.5982 | |
|
| 0.8852 | 9.9744 | 2920 | 2.5990 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |