metadata
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: gemma2b-summarize-gpt4o-32k
results: []
gemma2b-summarize-gpt4o-32k
This model is a fine-tuned version of google/gemma-2b on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 2.6191
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3438 | 1.0 | 73 | 2.5419 |
1.1767 | 2.0 | 146 | 2.4979 |
1.1163 | 3.0 | 219 | 2.4967 |
1.0605 | 4.0 | 292 | 2.5121 |
1.0362 | 5.0 | 365 | 2.5401 |
1.0052 | 6.0 | 438 | 2.5711 |
0.9813 | 7.0 | 511 | 2.5912 |
0.9593 | 8.0 | 584 | 2.6132 |
0.953 | 9.0 | 657 | 2.6180 |
0.9482 | 10.0 | 730 | 2.6191 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1