metadata
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: gemma2b-summarize-gpt4o-4k
results: []
gemma2b-summarize-gpt4o-4k
This model is a fine-tuned version of google/gemma-2b on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 2.5678
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.0546 | 0.9474 | 9 | 2.9560 |
2.2821 | 2.0 | 19 | 2.6966 |
1.8527 | 2.9474 | 28 | 2.6031 |
1.5789 | 4.0 | 38 | 2.5802 |
1.4487 | 4.9474 | 47 | 2.5688 |
1.3708 | 6.0 | 57 | 2.5638 |
1.3286 | 6.9474 | 66 | 2.5667 |
1.3104 | 8.0 | 76 | 2.5672 |
1.3046 | 8.9474 | 85 | 2.5674 |
1.3032 | 9.4737 | 90 | 2.5678 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1