|
--- |
|
license: gemma |
|
library_name: peft |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: google/gemma-2b |
|
datasets: |
|
- llama-duo/synth_summarize_dataset_dedup |
|
model-index: |
|
- name: gemma2b-summarize-gpt4o-64k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma2b-summarize-gpt4o-64k |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the llama-duo/synth_summarize_dataset_dedup dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5990 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 3 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 48 |
|
- total_eval_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.2959 | 1.0 | 146 | 2.5295 | |
|
| 1.1524 | 2.0 | 292 | 2.4913 | |
|
| 1.1138 | 3.0 | 438 | 2.4847 | |
|
| 1.0703 | 4.0 | 584 | 2.4927 | |
|
| 1.0423 | 5.0 | 730 | 2.5080 | |
|
| 1.0322 | 6.0 | 876 | 2.5202 | |
|
| 1.0113 | 7.0 | 1022 | 2.5385 | |
|
| 0.9857 | 8.0 | 1168 | 2.5522 | |
|
| 0.9865 | 9.0 | 1314 | 2.5657 | |
|
| 0.9691 | 10.0 | 1460 | 2.5774 | |
|
| 0.952 | 11.0 | 1606 | 2.5889 | |
|
| 0.97 | 12.0 | 1752 | 2.5957 | |
|
| 0.9514 | 13.0 | 1898 | 2.5988 | |
|
| 0.9469 | 14.0 | 2044 | 2.5997 | |
|
| 0.9469 | 15.0 | 2190 | 2.5990 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |