|
--- |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
datasets: |
|
- llama-duo/synth_coding_dataset_dedup |
|
library_name: peft |
|
license: llama3 |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: llama3-8b-coding-gpt4o-100k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3-8b-coding-gpt4o-100k |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the llama-duo/synth_coding_dataset_dedup dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5174 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.4861 | 1.0 | 135 | 1.2495 | |
|
| 0.458 | 2.0 | 270 | 1.2390 | |
|
| 0.4423 | 3.0 | 405 | 1.2549 | |
|
| 0.4244 | 4.0 | 540 | 1.2665 | |
|
| 0.4051 | 5.0 | 675 | 1.2714 | |
|
| 0.3815 | 6.0 | 810 | 1.2959 | |
|
| 0.3546 | 7.0 | 945 | 1.3560 | |
|
| 0.3233 | 8.0 | 1080 | 1.4125 | |
|
| 0.2969 | 9.0 | 1215 | 1.4809 | |
|
| 0.2818 | 10.0 | 1350 | 1.5174 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |