|
--- |
|
base_model: mistralai/Mistral-7B-v0.3 |
|
datasets: |
|
- llama-duo/synth_coding_dataset_dedup |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: mistral_7b_0_3-coding-gpt4o-100k2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mistral_7b_0_3-coding-gpt4o-100k2 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the llama-duo/synth_coding_dataset_dedup dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1573 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.419 | 0.9992 | 640 | 1.0503 | |
|
| 0.3829 | 2.0 | 1281 | 1.0418 | |
|
| 0.3774 | 2.9992 | 1921 | 1.0361 | |
|
| 0.355 | 4.0 | 2562 | 1.0419 | |
|
| 0.3413 | 4.9992 | 3202 | 1.0548 | |
|
| 0.318 | 6.0 | 3843 | 1.0761 | |
|
| 0.3056 | 6.9992 | 4483 | 1.1023 | |
|
| 0.2857 | 8.0 | 5124 | 1.1256 | |
|
| 0.2732 | 8.9992 | 5764 | 1.1472 | |
|
| 0.2714 | 9.9922 | 6400 | 1.1573 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |