|
--- |
|
language: |
|
- en |
|
license: llama2 |
|
pipeline_tag: video-text-to-text |
|
datasets: |
|
- lmms-lab/VideoChatGPT |
|
--- |
|
|
|
# LLaVA-NeXT-Video Model Card |
|
|
|
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CZggLHrjxMReG-FNOmqSOdi4z7NPq6SO?usp=sharing) |
|
|
|
Disclaimer: The team releasing LLaVa-NeXT-Video did not write a model card for this model so this model card has been written by the Hugging Face team. |
|
|
|
## 📄 Model details |
|
|
|
**Model type:** |
|
LLaVA-Next-Video is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. The model is buit on top of LLaVa-NeXT by tuning on a mix of video and image data to achieve better video understanding capabilities. The videos were sampled uniformly to be 32 frames per clip. |
|
The model is a current SOTA among open-source models on [VideoMME bench](https://arxiv.org/abs/2405.21075). |
|
Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) |
|
|
|
![llava_next_video_arch](demo.png) |
|
|
|
|
|
**Model date:** |
|
LLaVA-Next-Video-7B was trained in April 2024. |
|
|
|
**Paper or resources for more information:** https://github.com/LLaVA-VL/LLaVA-NeXT |
|
|
|
|
|
## 📚 Training dataset |
|
|
|
### Image |
|
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. |
|
- 158K GPT-generated multimodal instruction-following data. |
|
- 500K academic-task-oriented VQA data mixture. |
|
- 50K GPT-4V data mixture. |
|
- 40K ShareGPT data. |
|
|
|
### Video |
|
- 100K VideoChatGPT-Instruct. |
|
|
|
## 📊 Evaluation dataset |
|
A collection of 4 benchmarks, including 3 academic VQA benchmarks and 1 captioning benchmark. |
|
|
|
|
|
|
|
## 🚀 How to use the model |
|
|
|
First, make sure to have `transformers >= 4.42.0`. |
|
The model supports multi-visual and multi-prompt generation. Meaning that you can pass multiple images/videos in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` or `<video>` to the location where you want to query images/videos: |
|
|
|
Below is an example script to run generation in `float16` precision on a GPU device: |
|
|
|
```python |
|
import av |
|
import torch |
|
import numpy as np |
|
from huggingface_hub import hf_hub_download |
|
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration |
|
|
|
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf" |
|
|
|
model = LlavaNextVideoForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
).to(0) |
|
|
|
processor = LlavaNextVideoProcessor.from_pretrained(model_id) |
|
|
|
def read_video_pyav(container, indices): |
|
''' |
|
Decode the video with PyAV decoder. |
|
Args: |
|
container (`av.container.input.InputContainer`): PyAV container. |
|
indices (`List[int]`): List of frame indices to decode. |
|
Returns: |
|
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). |
|
''' |
|
frames = [] |
|
container.seek(0) |
|
start_index = indices[0] |
|
end_index = indices[-1] |
|
for i, frame in enumerate(container.decode(video=0)): |
|
if i > end_index: |
|
break |
|
if i >= start_index and i in indices: |
|
frames.append(frame) |
|
return np.stack([x.to_ndarray(format="rgb24") for x in frames]) |
|
|
|
|
|
# define a chat history and use `apply_chat_template` to get correctly formatted prompt |
|
# Each value in "content" has to be a list of dicts with types ("text", "image", "video") |
|
conversation = [ |
|
{ |
|
|
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "Why is this video funny?"}, |
|
{"type": "video"}, |
|
], |
|
}, |
|
] |
|
|
|
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) |
|
|
|
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset") |
|
container = av.open(video_path) |
|
|
|
# sample uniformly 8 frames from the video, can sample more for longer videos |
|
total_frames = container.streams.video[0].frames |
|
indices = np.arange(0, total_frames, total_frames / 8).astype(int) |
|
clip = read_video_pyav(container, indices) |
|
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device) |
|
|
|
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False) |
|
print(processor.decode(output[0][2:], skip_special_tokens=True)) |
|
``` |
|
|
|
### Inference with images as inputs |
|
|
|
To generate from images use the below code after loading the model as shown above: |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
|
|
conversation = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "What are these?"}, |
|
{"type": "image"}, |
|
], |
|
}, |
|
] |
|
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) |
|
|
|
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
raw_image = Image.open(requests.get(image_file, stream=True).raw) |
|
inputs_image = processor(text=prompt, images=raw_image, return_tensors='pt').to(0, torch.float16) |
|
|
|
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False) |
|
print(processor.decode(output[0][2:], skip_special_tokens=True)) |
|
``` |
|
|
|
### Inference with images and videos as inputs |
|
|
|
To generate from images and videos in one generate use the below code after loading the model as shown above: |
|
|
|
```python |
|
conversation_1 = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "What's the content of the image>"}, |
|
{"type": "image"}, |
|
], |
|
} |
|
] |
|
conversation_2 = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "Why is this video funny?"}, |
|
{"type": "video"}, |
|
], |
|
}, |
|
] |
|
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True) |
|
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True) |
|
|
|
s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device) |
|
|
|
# Generate |
|
generate_ids = model.generate(**inputs, max_new_tokens=100) |
|
out = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
print(out) |
|
``` |
|
|
|
### Model optimization |
|
|
|
#### 4-bit quantization through `bitsandbytes` library |
|
|
|
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: |
|
|
|
```diff |
|
model = LlavaNextVideoForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
+ load_in_4bit=True |
|
) |
|
``` |
|
|
|
#### Use Flash-Attention 2 to further speed-up generation |
|
|
|
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: |
|
|
|
```diff |
|
model = LlavaNextVideoForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
+ use_flash_attention_2=True |
|
).to(0) |
|
``` |
|
|
|
|
|
## 🔒 License |
|
Llama 2 is licensed under the LLAMA 2 Community License, |
|
Copyright (c) Meta Platforms, Inc. All Rights Reserved. |
|
|
|
|
|
## ✏️ Citation |
|
If you find our paper and code useful in your research: |
|
|
|
```BibTeX |
|
@misc{zhang2024llavanextvideo, |
|
title={LLaVA-NeXT: A Strong Zero-shot Video Understanding Model}, |
|
url={https://llava-vl.github.io/blog/2024-04-30-llava-next-video/}, |
|
author={Zhang, Yuanhan and Li, Bo and Liu, haotian and Lee, Yong jae and Gui, Liangke and Fu, Di and Feng, Jiashi and Liu, Ziwei and Li, Chunyuan}, |
|
month={April}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
```BibTeX |
|
@misc{liu2024llavanext, |
|
title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge}, |
|
url={https://llava-vl.github.io/blog/2024-01-30-llava-next/}, |
|
author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae}, |
|
month={January}, |
|
year={2024} |
|
} |
|
``` |