ember-v1 / README.md
w95's picture
Update README.md
5e5ce59 verified
|
raw
history blame
65.6 kB
metadata
tags:
  - mteb
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
language: en
license: mit
model-index:
  - name: ember_v1
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 76.05970149253731
          - type: ap
            value: 38.76045348512767
          - type: f1
            value: 69.8824007294685
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 91.977
          - type: ap
            value: 88.63507587170176
          - type: f1
            value: 91.9524133311038
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 47.938
          - type: f1
            value: 47.58273047536129
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 41.252
          - type: map_at_10
            value: 56.567
          - type: map_at_100
            value: 57.07600000000001
          - type: map_at_1000
            value: 57.08
          - type: map_at_3
            value: 52.394
          - type: map_at_5
            value: 55.055
          - type: mrr_at_1
            value: 42.39
          - type: mrr_at_10
            value: 57.001999999999995
          - type: mrr_at_100
            value: 57.531
          - type: mrr_at_1000
            value: 57.535000000000004
          - type: mrr_at_3
            value: 52.845
          - type: mrr_at_5
            value: 55.47299999999999
          - type: ndcg_at_1
            value: 41.252
          - type: ndcg_at_10
            value: 64.563
          - type: ndcg_at_100
            value: 66.667
          - type: ndcg_at_1000
            value: 66.77
          - type: ndcg_at_3
            value: 56.120000000000005
          - type: ndcg_at_5
            value: 60.889
          - type: precision_at_1
            value: 41.252
          - type: precision_at_10
            value: 8.982999999999999
          - type: precision_at_100
            value: 0.989
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 22.309
          - type: precision_at_5
            value: 15.690000000000001
          - type: recall_at_1
            value: 41.252
          - type: recall_at_10
            value: 89.82900000000001
          - type: recall_at_100
            value: 98.86200000000001
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 66.927
          - type: recall_at_5
            value: 78.45
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 48.5799968717232
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 43.142844164856136
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 64.45997990276463
          - type: mrr
            value: 77.85560392208592
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 86.38299310075898
          - type: cos_sim_spearman
            value: 85.81038898286454
          - type: euclidean_pearson
            value: 84.28002556389774
          - type: euclidean_spearman
            value: 85.80315990248238
          - type: manhattan_pearson
            value: 83.9755390675032
          - type: manhattan_spearman
            value: 85.30435335611396
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 87.89935064935065
          - type: f1
            value: 87.87886687103833
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 38.84335510371379
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 36.377963093857005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.557
          - type: map_at_10
            value: 44.501000000000005
          - type: map_at_100
            value: 46.11
          - type: map_at_1000
            value: 46.232
          - type: map_at_3
            value: 40.711000000000006
          - type: map_at_5
            value: 42.937
          - type: mrr_at_1
            value: 40.916000000000004
          - type: mrr_at_10
            value: 51.317
          - type: mrr_at_100
            value: 52.003
          - type: mrr_at_1000
            value: 52.044999999999995
          - type: mrr_at_3
            value: 48.569
          - type: mrr_at_5
            value: 50.322
          - type: ndcg_at_1
            value: 40.916000000000004
          - type: ndcg_at_10
            value: 51.353
          - type: ndcg_at_100
            value: 56.762
          - type: ndcg_at_1000
            value: 58.555
          - type: ndcg_at_3
            value: 46.064
          - type: ndcg_at_5
            value: 48.677
          - type: precision_at_1
            value: 40.916000000000004
          - type: precision_at_10
            value: 9.927999999999999
          - type: precision_at_100
            value: 1.592
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 22.078999999999997
          - type: precision_at_5
            value: 16.08
          - type: recall_at_1
            value: 32.557
          - type: recall_at_10
            value: 63.942
          - type: recall_at_100
            value: 86.436
          - type: recall_at_1000
            value: 97.547
          - type: recall_at_3
            value: 48.367
          - type: recall_at_5
            value: 55.818
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.106
          - type: map_at_10
            value: 42.55
          - type: map_at_100
            value: 43.818
          - type: map_at_1000
            value: 43.952999999999996
          - type: map_at_3
            value: 39.421
          - type: map_at_5
            value: 41.276
          - type: mrr_at_1
            value: 39.936
          - type: mrr_at_10
            value: 48.484
          - type: mrr_at_100
            value: 49.123
          - type: mrr_at_1000
            value: 49.163000000000004
          - type: mrr_at_3
            value: 46.221000000000004
          - type: mrr_at_5
            value: 47.603
          - type: ndcg_at_1
            value: 39.936
          - type: ndcg_at_10
            value: 48.25
          - type: ndcg_at_100
            value: 52.674
          - type: ndcg_at_1000
            value: 54.638
          - type: ndcg_at_3
            value: 44.05
          - type: ndcg_at_5
            value: 46.125
          - type: precision_at_1
            value: 39.936
          - type: precision_at_10
            value: 9.096
          - type: precision_at_100
            value: 1.473
          - type: precision_at_1000
            value: 0.19499999999999998
          - type: precision_at_3
            value: 21.295
          - type: precision_at_5
            value: 15.121
          - type: recall_at_1
            value: 32.106
          - type: recall_at_10
            value: 58.107
          - type: recall_at_100
            value: 76.873
          - type: recall_at_1000
            value: 89.079
          - type: recall_at_3
            value: 45.505
          - type: recall_at_5
            value: 51.479
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 41.513
          - type: map_at_10
            value: 54.571999999999996
          - type: map_at_100
            value: 55.579
          - type: map_at_1000
            value: 55.626
          - type: map_at_3
            value: 51.127
          - type: map_at_5
            value: 53.151
          - type: mrr_at_1
            value: 47.398
          - type: mrr_at_10
            value: 57.82000000000001
          - type: mrr_at_100
            value: 58.457
          - type: mrr_at_1000
            value: 58.479000000000006
          - type: mrr_at_3
            value: 55.32899999999999
          - type: mrr_at_5
            value: 56.89999999999999
          - type: ndcg_at_1
            value: 47.398
          - type: ndcg_at_10
            value: 60.599000000000004
          - type: ndcg_at_100
            value: 64.366
          - type: ndcg_at_1000
            value: 65.333
          - type: ndcg_at_3
            value: 54.98
          - type: ndcg_at_5
            value: 57.874
          - type: precision_at_1
            value: 47.398
          - type: precision_at_10
            value: 9.806
          - type: precision_at_100
            value: 1.2590000000000001
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 24.619
          - type: precision_at_5
            value: 16.878
          - type: recall_at_1
            value: 41.513
          - type: recall_at_10
            value: 74.91799999999999
          - type: recall_at_100
            value: 90.96
          - type: recall_at_1000
            value: 97.923
          - type: recall_at_3
            value: 60.013000000000005
          - type: recall_at_5
            value: 67.245
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.319
          - type: map_at_10
            value: 35.766999999999996
          - type: map_at_100
            value: 36.765
          - type: map_at_1000
            value: 36.829
          - type: map_at_3
            value: 32.888
          - type: map_at_5
            value: 34.538999999999994
          - type: mrr_at_1
            value: 28.249000000000002
          - type: mrr_at_10
            value: 37.766
          - type: mrr_at_100
            value: 38.62
          - type: mrr_at_1000
            value: 38.667
          - type: mrr_at_3
            value: 35.009
          - type: mrr_at_5
            value: 36.608000000000004
          - type: ndcg_at_1
            value: 28.249000000000002
          - type: ndcg_at_10
            value: 41.215
          - type: ndcg_at_100
            value: 46.274
          - type: ndcg_at_1000
            value: 48.007
          - type: ndcg_at_3
            value: 35.557
          - type: ndcg_at_5
            value: 38.344
          - type: precision_at_1
            value: 28.249000000000002
          - type: precision_at_10
            value: 6.429
          - type: precision_at_100
            value: 0.9480000000000001
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_3
            value: 15.179
          - type: precision_at_5
            value: 10.734
          - type: recall_at_1
            value: 26.319
          - type: recall_at_10
            value: 56.157999999999994
          - type: recall_at_100
            value: 79.65
          - type: recall_at_1000
            value: 92.73
          - type: recall_at_3
            value: 40.738
          - type: recall_at_5
            value: 47.418
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.485
          - type: map_at_10
            value: 27.400999999999996
          - type: map_at_100
            value: 28.665000000000003
          - type: map_at_1000
            value: 28.79
          - type: map_at_3
            value: 24.634
          - type: map_at_5
            value: 26.313
          - type: mrr_at_1
            value: 23.134
          - type: mrr_at_10
            value: 32.332
          - type: mrr_at_100
            value: 33.318
          - type: mrr_at_1000
            value: 33.384
          - type: mrr_at_3
            value: 29.664
          - type: mrr_at_5
            value: 31.262
          - type: ndcg_at_1
            value: 23.134
          - type: ndcg_at_10
            value: 33.016
          - type: ndcg_at_100
            value: 38.763
          - type: ndcg_at_1000
            value: 41.619
          - type: ndcg_at_3
            value: 28.017999999999997
          - type: ndcg_at_5
            value: 30.576999999999998
          - type: precision_at_1
            value: 23.134
          - type: precision_at_10
            value: 6.069999999999999
          - type: precision_at_100
            value: 1.027
          - type: precision_at_1000
            value: 0.14200000000000002
          - type: precision_at_3
            value: 13.599
          - type: precision_at_5
            value: 9.975000000000001
          - type: recall_at_1
            value: 18.485
          - type: recall_at_10
            value: 45.39
          - type: recall_at_100
            value: 69.876
          - type: recall_at_1000
            value: 90.023
          - type: recall_at_3
            value: 31.587
          - type: recall_at_5
            value: 38.164
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.676
          - type: map_at_10
            value: 41.785
          - type: map_at_100
            value: 43.169000000000004
          - type: map_at_1000
            value: 43.272
          - type: map_at_3
            value: 38.462
          - type: map_at_5
            value: 40.32
          - type: mrr_at_1
            value: 37.729
          - type: mrr_at_10
            value: 47.433
          - type: mrr_at_100
            value: 48.303000000000004
          - type: mrr_at_1000
            value: 48.337
          - type: mrr_at_3
            value: 45.011
          - type: mrr_at_5
            value: 46.455
          - type: ndcg_at_1
            value: 37.729
          - type: ndcg_at_10
            value: 47.921
          - type: ndcg_at_100
            value: 53.477
          - type: ndcg_at_1000
            value: 55.300000000000004
          - type: ndcg_at_3
            value: 42.695
          - type: ndcg_at_5
            value: 45.175
          - type: precision_at_1
            value: 37.729
          - type: precision_at_10
            value: 8.652999999999999
          - type: precision_at_100
            value: 1.336
          - type: precision_at_1000
            value: 0.168
          - type: precision_at_3
            value: 20.18
          - type: precision_at_5
            value: 14.302000000000001
          - type: recall_at_1
            value: 30.676
          - type: recall_at_10
            value: 60.441
          - type: recall_at_100
            value: 83.37
          - type: recall_at_1000
            value: 95.092
          - type: recall_at_3
            value: 45.964
          - type: recall_at_5
            value: 52.319
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.978
          - type: map_at_10
            value: 35.926
          - type: map_at_100
            value: 37.341
          - type: map_at_1000
            value: 37.445
          - type: map_at_3
            value: 32.748
          - type: map_at_5
            value: 34.207
          - type: mrr_at_1
            value: 31.163999999999998
          - type: mrr_at_10
            value: 41.394
          - type: mrr_at_100
            value: 42.321
          - type: mrr_at_1000
            value: 42.368
          - type: mrr_at_3
            value: 38.964999999999996
          - type: mrr_at_5
            value: 40.135
          - type: ndcg_at_1
            value: 31.163999999999998
          - type: ndcg_at_10
            value: 42.191
          - type: ndcg_at_100
            value: 48.083999999999996
          - type: ndcg_at_1000
            value: 50.21
          - type: ndcg_at_3
            value: 36.979
          - type: ndcg_at_5
            value: 38.823
          - type: precision_at_1
            value: 31.163999999999998
          - type: precision_at_10
            value: 7.968
          - type: precision_at_100
            value: 1.2550000000000001
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 18.075
          - type: precision_at_5
            value: 12.626000000000001
          - type: recall_at_1
            value: 24.978
          - type: recall_at_10
            value: 55.410000000000004
          - type: recall_at_100
            value: 80.562
          - type: recall_at_1000
            value: 94.77600000000001
          - type: recall_at_3
            value: 40.359
          - type: recall_at_5
            value: 45.577
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.812166666666666
          - type: map_at_10
            value: 36.706916666666665
          - type: map_at_100
            value: 37.94016666666666
          - type: map_at_1000
            value: 38.05358333333333
          - type: map_at_3
            value: 33.72408333333334
          - type: map_at_5
            value: 35.36508333333333
          - type: mrr_at_1
            value: 31.91516666666667
          - type: mrr_at_10
            value: 41.09716666666666
          - type: mrr_at_100
            value: 41.931916666666666
          - type: mrr_at_1000
            value: 41.98458333333333
          - type: mrr_at_3
            value: 38.60183333333333
          - type: mrr_at_5
            value: 40.031916666666675
          - type: ndcg_at_1
            value: 31.91516666666667
          - type: ndcg_at_10
            value: 42.38725
          - type: ndcg_at_100
            value: 47.56291666666667
          - type: ndcg_at_1000
            value: 49.716499999999996
          - type: ndcg_at_3
            value: 37.36491666666667
          - type: ndcg_at_5
            value: 39.692166666666665
          - type: precision_at_1
            value: 31.91516666666667
          - type: precision_at_10
            value: 7.476749999999999
          - type: precision_at_100
            value: 1.1869166666666668
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 17.275249999999996
          - type: precision_at_5
            value: 12.25825
          - type: recall_at_1
            value: 26.812166666666666
          - type: recall_at_10
            value: 54.82933333333333
          - type: recall_at_100
            value: 77.36508333333333
          - type: recall_at_1000
            value: 92.13366666666667
          - type: recall_at_3
            value: 40.83508333333334
          - type: recall_at_5
            value: 46.85083333333334
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.352999999999998
          - type: map_at_10
            value: 33.025999999999996
          - type: map_at_100
            value: 33.882
          - type: map_at_1000
            value: 33.983999999999995
          - type: map_at_3
            value: 30.995
          - type: map_at_5
            value: 32.113
          - type: mrr_at_1
            value: 28.834
          - type: mrr_at_10
            value: 36.14
          - type: mrr_at_100
            value: 36.815
          - type: mrr_at_1000
            value: 36.893
          - type: mrr_at_3
            value: 34.305
          - type: mrr_at_5
            value: 35.263
          - type: ndcg_at_1
            value: 28.834
          - type: ndcg_at_10
            value: 37.26
          - type: ndcg_at_100
            value: 41.723
          - type: ndcg_at_1000
            value: 44.314
          - type: ndcg_at_3
            value: 33.584
          - type: ndcg_at_5
            value: 35.302
          - type: precision_at_1
            value: 28.834
          - type: precision_at_10
            value: 5.736
          - type: precision_at_100
            value: 0.876
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 14.468
          - type: precision_at_5
            value: 9.847
          - type: recall_at_1
            value: 25.352999999999998
          - type: recall_at_10
            value: 47.155
          - type: recall_at_100
            value: 68.024
          - type: recall_at_1000
            value: 87.26899999999999
          - type: recall_at_3
            value: 37.074
          - type: recall_at_5
            value: 41.352
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.845
          - type: map_at_10
            value: 25.556
          - type: map_at_100
            value: 26.787
          - type: map_at_1000
            value: 26.913999999999998
          - type: map_at_3
            value: 23.075000000000003
          - type: map_at_5
            value: 24.308
          - type: mrr_at_1
            value: 21.714
          - type: mrr_at_10
            value: 29.543999999999997
          - type: mrr_at_100
            value: 30.543
          - type: mrr_at_1000
            value: 30.618000000000002
          - type: mrr_at_3
            value: 27.174
          - type: mrr_at_5
            value: 28.409000000000002
          - type: ndcg_at_1
            value: 21.714
          - type: ndcg_at_10
            value: 30.562
          - type: ndcg_at_100
            value: 36.27
          - type: ndcg_at_1000
            value: 39.033
          - type: ndcg_at_3
            value: 26.006
          - type: ndcg_at_5
            value: 27.843
          - type: precision_at_1
            value: 21.714
          - type: precision_at_10
            value: 5.657
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 12.4
          - type: precision_at_5
            value: 8.863999999999999
          - type: recall_at_1
            value: 17.845
          - type: recall_at_10
            value: 41.72
          - type: recall_at_100
            value: 67.06400000000001
          - type: recall_at_1000
            value: 86.515
          - type: recall_at_3
            value: 28.78
          - type: recall_at_5
            value: 33.629999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.695
          - type: map_at_10
            value: 36.205999999999996
          - type: map_at_100
            value: 37.346000000000004
          - type: map_at_1000
            value: 37.447
          - type: map_at_3
            value: 32.84
          - type: map_at_5
            value: 34.733000000000004
          - type: mrr_at_1
            value: 31.343
          - type: mrr_at_10
            value: 40.335
          - type: mrr_at_100
            value: 41.162
          - type: mrr_at_1000
            value: 41.221000000000004
          - type: mrr_at_3
            value: 37.329
          - type: mrr_at_5
            value: 39.068999999999996
          - type: ndcg_at_1
            value: 31.343
          - type: ndcg_at_10
            value: 41.996
          - type: ndcg_at_100
            value: 47.096
          - type: ndcg_at_1000
            value: 49.4
          - type: ndcg_at_3
            value: 35.902
          - type: ndcg_at_5
            value: 38.848
          - type: precision_at_1
            value: 31.343
          - type: precision_at_10
            value: 7.146
          - type: precision_at_100
            value: 1.098
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 16.014
          - type: precision_at_5
            value: 11.735
          - type: recall_at_1
            value: 26.695
          - type: recall_at_10
            value: 55.525000000000006
          - type: recall_at_100
            value: 77.376
          - type: recall_at_1000
            value: 93.476
          - type: recall_at_3
            value: 39.439
          - type: recall_at_5
            value: 46.501
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.196
          - type: map_at_10
            value: 33.516
          - type: map_at_100
            value: 35.202
          - type: map_at_1000
            value: 35.426
          - type: map_at_3
            value: 30.561
          - type: map_at_5
            value: 31.961000000000002
          - type: mrr_at_1
            value: 29.644
          - type: mrr_at_10
            value: 38.769
          - type: mrr_at_100
            value: 39.843
          - type: mrr_at_1000
            value: 39.888
          - type: mrr_at_3
            value: 36.132999999999996
          - type: mrr_at_5
            value: 37.467
          - type: ndcg_at_1
            value: 29.644
          - type: ndcg_at_10
            value: 39.584
          - type: ndcg_at_100
            value: 45.964
          - type: ndcg_at_1000
            value: 48.27
          - type: ndcg_at_3
            value: 34.577999999999996
          - type: ndcg_at_5
            value: 36.498000000000005
          - type: precision_at_1
            value: 29.644
          - type: precision_at_10
            value: 7.668
          - type: precision_at_100
            value: 1.545
          - type: precision_at_1000
            value: 0.242
          - type: precision_at_3
            value: 16.271
          - type: precision_at_5
            value: 11.620999999999999
          - type: recall_at_1
            value: 24.196
          - type: recall_at_10
            value: 51.171
          - type: recall_at_100
            value: 79.212
          - type: recall_at_1000
            value: 92.976
          - type: recall_at_3
            value: 36.797999999999995
          - type: recall_at_5
            value: 42.006
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.023
          - type: map_at_10
            value: 29.677
          - type: map_at_100
            value: 30.618000000000002
          - type: map_at_1000
            value: 30.725
          - type: map_at_3
            value: 27.227
          - type: map_at_5
            value: 28.523
          - type: mrr_at_1
            value: 22.921
          - type: mrr_at_10
            value: 31.832
          - type: mrr_at_100
            value: 32.675
          - type: mrr_at_1000
            value: 32.751999999999995
          - type: mrr_at_3
            value: 29.513
          - type: mrr_at_5
            value: 30.89
          - type: ndcg_at_1
            value: 22.921
          - type: ndcg_at_10
            value: 34.699999999999996
          - type: ndcg_at_100
            value: 39.302
          - type: ndcg_at_1000
            value: 41.919000000000004
          - type: ndcg_at_3
            value: 29.965999999999998
          - type: ndcg_at_5
            value: 32.22
          - type: precision_at_1
            value: 22.921
          - type: precision_at_10
            value: 5.564
          - type: precision_at_100
            value: 0.8340000000000001
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 13.123999999999999
          - type: precision_at_5
            value: 9.316
          - type: recall_at_1
            value: 21.023
          - type: recall_at_10
            value: 48.015
          - type: recall_at_100
            value: 68.978
          - type: recall_at_1000
            value: 88.198
          - type: recall_at_3
            value: 35.397
          - type: recall_at_5
            value: 40.701
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 11.198
          - type: map_at_10
            value: 19.336000000000002
          - type: map_at_100
            value: 21.382
          - type: map_at_1000
            value: 21.581
          - type: map_at_3
            value: 15.992
          - type: map_at_5
            value: 17.613
          - type: mrr_at_1
            value: 25.080999999999996
          - type: mrr_at_10
            value: 36.032
          - type: mrr_at_100
            value: 37.1
          - type: mrr_at_1000
            value: 37.145
          - type: mrr_at_3
            value: 32.595
          - type: mrr_at_5
            value: 34.553
          - type: ndcg_at_1
            value: 25.080999999999996
          - type: ndcg_at_10
            value: 27.290999999999997
          - type: ndcg_at_100
            value: 35.31
          - type: ndcg_at_1000
            value: 38.885
          - type: ndcg_at_3
            value: 21.895999999999997
          - type: ndcg_at_5
            value: 23.669999999999998
          - type: precision_at_1
            value: 25.080999999999996
          - type: precision_at_10
            value: 8.645
          - type: precision_at_100
            value: 1.7209999999999999
          - type: precision_at_1000
            value: 0.23900000000000002
          - type: precision_at_3
            value: 16.287
          - type: precision_at_5
            value: 12.625
          - type: recall_at_1
            value: 11.198
          - type: recall_at_10
            value: 33.355000000000004
          - type: recall_at_100
            value: 60.912
          - type: recall_at_1000
            value: 80.89
          - type: recall_at_3
            value: 20.055
          - type: recall_at_5
            value: 25.14
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.228
          - type: map_at_10
            value: 20.018
          - type: map_at_100
            value: 28.388999999999996
          - type: map_at_1000
            value: 30.073
          - type: map_at_3
            value: 14.366999999999999
          - type: map_at_5
            value: 16.705000000000002
          - type: mrr_at_1
            value: 69
          - type: mrr_at_10
            value: 77.058
          - type: mrr_at_100
            value: 77.374
          - type: mrr_at_1000
            value: 77.384
          - type: mrr_at_3
            value: 75.708
          - type: mrr_at_5
            value: 76.608
          - type: ndcg_at_1
            value: 57.49999999999999
          - type: ndcg_at_10
            value: 41.792
          - type: ndcg_at_100
            value: 47.374
          - type: ndcg_at_1000
            value: 55.13
          - type: ndcg_at_3
            value: 46.353
          - type: ndcg_at_5
            value: 43.702000000000005
          - type: precision_at_1
            value: 69
          - type: precision_at_10
            value: 32.85
          - type: precision_at_100
            value: 10.708
          - type: precision_at_1000
            value: 2.024
          - type: precision_at_3
            value: 49.5
          - type: precision_at_5
            value: 42.05
          - type: recall_at_1
            value: 9.228
          - type: recall_at_10
            value: 25.635
          - type: recall_at_100
            value: 54.894
          - type: recall_at_1000
            value: 79.38
          - type: recall_at_3
            value: 15.68
          - type: recall_at_5
            value: 19.142
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 52.035
          - type: f1
            value: 46.85325505614071
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.132
          - type: map_at_10
            value: 79.527
          - type: map_at_100
            value: 79.81200000000001
          - type: map_at_1000
            value: 79.828
          - type: map_at_3
            value: 78.191
          - type: map_at_5
            value: 79.092
          - type: mrr_at_1
            value: 75.563
          - type: mrr_at_10
            value: 83.80199999999999
          - type: mrr_at_100
            value: 83.93
          - type: mrr_at_1000
            value: 83.933
          - type: mrr_at_3
            value: 82.818
          - type: mrr_at_5
            value: 83.505
          - type: ndcg_at_1
            value: 75.563
          - type: ndcg_at_10
            value: 83.692
          - type: ndcg_at_100
            value: 84.706
          - type: ndcg_at_1000
            value: 85.001
          - type: ndcg_at_3
            value: 81.51
          - type: ndcg_at_5
            value: 82.832
          - type: precision_at_1
            value: 75.563
          - type: precision_at_10
            value: 10.245
          - type: precision_at_100
            value: 1.0959999999999999
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_3
            value: 31.518
          - type: precision_at_5
            value: 19.772000000000002
          - type: recall_at_1
            value: 70.132
          - type: recall_at_10
            value: 92.204
          - type: recall_at_100
            value: 96.261
          - type: recall_at_1000
            value: 98.17399999999999
          - type: recall_at_3
            value: 86.288
          - type: recall_at_5
            value: 89.63799999999999
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.269
          - type: map_at_10
            value: 36.042
          - type: map_at_100
            value: 37.988
          - type: map_at_1000
            value: 38.162
          - type: map_at_3
            value: 31.691000000000003
          - type: map_at_5
            value: 33.988
          - type: mrr_at_1
            value: 44.907000000000004
          - type: mrr_at_10
            value: 53.348
          - type: mrr_at_100
            value: 54.033
          - type: mrr_at_1000
            value: 54.064
          - type: mrr_at_3
            value: 50.977
          - type: mrr_at_5
            value: 52.112
          - type: ndcg_at_1
            value: 44.907000000000004
          - type: ndcg_at_10
            value: 44.302
          - type: ndcg_at_100
            value: 51.054
          - type: ndcg_at_1000
            value: 53.822
          - type: ndcg_at_3
            value: 40.615
          - type: ndcg_at_5
            value: 41.455999999999996
          - type: precision_at_1
            value: 44.907000000000004
          - type: precision_at_10
            value: 12.176
          - type: precision_at_100
            value: 1.931
          - type: precision_at_1000
            value: 0.243
          - type: precision_at_3
            value: 27.16
          - type: precision_at_5
            value: 19.567999999999998
          - type: recall_at_1
            value: 22.269
          - type: recall_at_10
            value: 51.188
          - type: recall_at_100
            value: 75.924
          - type: recall_at_1000
            value: 92.525
          - type: recall_at_3
            value: 36.643
          - type: recall_at_5
            value: 42.27
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.412
          - type: map_at_10
            value: 66.376
          - type: map_at_100
            value: 67.217
          - type: map_at_1000
            value: 67.271
          - type: map_at_3
            value: 62.741
          - type: map_at_5
            value: 65.069
          - type: mrr_at_1
            value: 80.824
          - type: mrr_at_10
            value: 86.53
          - type: mrr_at_100
            value: 86.67399999999999
          - type: mrr_at_1000
            value: 86.678
          - type: mrr_at_3
            value: 85.676
          - type: mrr_at_5
            value: 86.256
          - type: ndcg_at_1
            value: 80.824
          - type: ndcg_at_10
            value: 74.332
          - type: ndcg_at_100
            value: 77.154
          - type: ndcg_at_1000
            value: 78.12400000000001
          - type: ndcg_at_3
            value: 69.353
          - type: ndcg_at_5
            value: 72.234
          - type: precision_at_1
            value: 80.824
          - type: precision_at_10
            value: 15.652
          - type: precision_at_100
            value: 1.7840000000000003
          - type: precision_at_1000
            value: 0.191
          - type: precision_at_3
            value: 44.911
          - type: precision_at_5
            value: 29.221000000000004
          - type: recall_at_1
            value: 40.412
          - type: recall_at_10
            value: 78.25800000000001
          - type: recall_at_100
            value: 89.196
          - type: recall_at_1000
            value: 95.544
          - type: recall_at_3
            value: 67.367
          - type: recall_at_5
            value: 73.05199999999999
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 92.78880000000001
          - type: ap
            value: 89.39251741048801
          - type: f1
            value: 92.78019950076781
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 22.888
          - type: map_at_10
            value: 35.146
          - type: map_at_100
            value: 36.325
          - type: map_at_1000
            value: 36.372
          - type: map_at_3
            value: 31.3
          - type: map_at_5
            value: 33.533
          - type: mrr_at_1
            value: 23.480999999999998
          - type: mrr_at_10
            value: 35.777
          - type: mrr_at_100
            value: 36.887
          - type: mrr_at_1000
            value: 36.928
          - type: mrr_at_3
            value: 31.989
          - type: mrr_at_5
            value: 34.202
          - type: ndcg_at_1
            value: 23.496
          - type: ndcg_at_10
            value: 42.028999999999996
          - type: ndcg_at_100
            value: 47.629
          - type: ndcg_at_1000
            value: 48.785000000000004
          - type: ndcg_at_3
            value: 34.227000000000004
          - type: ndcg_at_5
            value: 38.207
          - type: precision_at_1
            value: 23.496
          - type: precision_at_10
            value: 6.596
          - type: precision_at_100
            value: 0.9400000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.513000000000002
          - type: precision_at_5
            value: 10.711
          - type: recall_at_1
            value: 22.888
          - type: recall_at_10
            value: 63.129999999999995
          - type: recall_at_100
            value: 88.90299999999999
          - type: recall_at_1000
            value: 97.69
          - type: recall_at_3
            value: 42.014
          - type: recall_at_5
            value: 51.554
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 94.59188326493388
          - type: f1
            value: 94.36568950290486
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 79.25672594619242
          - type: f1
            value: 59.52405059722216
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 77.4142568930733
          - type: f1
            value: 75.23044196543388
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 80.44720914593141
          - type: f1
            value: 80.41049641537015
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.960921474993775
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 30.88042240204361
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.27071371606404
          - type: mrr
            value: 33.541450459533856
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.551
          - type: map_at_10
            value: 14.359
          - type: map_at_100
            value: 18.157
          - type: map_at_1000
            value: 19.659
          - type: map_at_3
            value: 10.613999999999999
          - type: map_at_5
            value: 12.296
          - type: mrr_at_1
            value: 47.368
          - type: mrr_at_10
            value: 56.689
          - type: mrr_at_100
            value: 57.24399999999999
          - type: mrr_at_1000
            value: 57.284
          - type: mrr_at_3
            value: 54.489
          - type: mrr_at_5
            value: 55.928999999999995
          - type: ndcg_at_1
            value: 45.511
          - type: ndcg_at_10
            value: 36.911
          - type: ndcg_at_100
            value: 34.241
          - type: ndcg_at_1000
            value: 43.064
          - type: ndcg_at_3
            value: 42.348
          - type: ndcg_at_5
            value: 39.884
          - type: precision_at_1
            value: 46.749
          - type: precision_at_10
            value: 27.028000000000002
          - type: precision_at_100
            value: 8.52
          - type: precision_at_1000
            value: 2.154
          - type: precision_at_3
            value: 39.525
          - type: precision_at_5
            value: 34.18
          - type: recall_at_1
            value: 6.551
          - type: recall_at_10
            value: 18.602
          - type: recall_at_100
            value: 34.882999999999996
          - type: recall_at_1000
            value: 66.049
          - type: recall_at_3
            value: 11.872
          - type: recall_at_5
            value: 14.74
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.828999999999997
          - type: map_at_10
            value: 43.606
          - type: map_at_100
            value: 44.656
          - type: map_at_1000
            value: 44.690000000000005
          - type: map_at_3
            value: 39.015
          - type: map_at_5
            value: 41.625
          - type: mrr_at_1
            value: 31.518
          - type: mrr_at_10
            value: 46.047
          - type: mrr_at_100
            value: 46.846
          - type: mrr_at_1000
            value: 46.867999999999995
          - type: mrr_at_3
            value: 42.154
          - type: mrr_at_5
            value: 44.468999999999994
          - type: ndcg_at_1
            value: 31.518
          - type: ndcg_at_10
            value: 51.768
          - type: ndcg_at_100
            value: 56.184999999999995
          - type: ndcg_at_1000
            value: 56.92
          - type: ndcg_at_3
            value: 43.059999999999995
          - type: ndcg_at_5
            value: 47.481
          - type: precision_at_1
            value: 31.518
          - type: precision_at_10
            value: 8.824
          - type: precision_at_100
            value: 1.131
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 19.969
          - type: precision_at_5
            value: 14.502
          - type: recall_at_1
            value: 27.828999999999997
          - type: recall_at_10
            value: 74.244
          - type: recall_at_100
            value: 93.325
          - type: recall_at_1000
            value: 98.71799999999999
          - type: recall_at_3
            value: 51.601
          - type: recall_at_5
            value: 61.841
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 71.54
          - type: map_at_10
            value: 85.509
          - type: map_at_100
            value: 86.137
          - type: map_at_1000
            value: 86.151
          - type: map_at_3
            value: 82.624
          - type: map_at_5
            value: 84.425
          - type: mrr_at_1
            value: 82.45
          - type: mrr_at_10
            value: 88.344
          - type: mrr_at_100
            value: 88.437
          - type: mrr_at_1000
            value: 88.437
          - type: mrr_at_3
            value: 87.417
          - type: mrr_at_5
            value: 88.066
          - type: ndcg_at_1
            value: 82.45
          - type: ndcg_at_10
            value: 89.092
          - type: ndcg_at_100
            value: 90.252
          - type: ndcg_at_1000
            value: 90.321
          - type: ndcg_at_3
            value: 86.404
          - type: ndcg_at_5
            value: 87.883
          - type: precision_at_1
            value: 82.45
          - type: precision_at_10
            value: 13.496
          - type: precision_at_100
            value: 1.536
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.833
          - type: precision_at_5
            value: 24.79
          - type: recall_at_1
            value: 71.54
          - type: recall_at_10
            value: 95.846
          - type: recall_at_100
            value: 99.715
          - type: recall_at_1000
            value: 99.979
          - type: recall_at_3
            value: 88.01299999999999
          - type: recall_at_5
            value: 92.32000000000001
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 57.60557586253866
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 64.0287172242051
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.9849999999999994
          - type: map_at_10
            value: 11.397
          - type: map_at_100
            value: 13.985
          - type: map_at_1000
            value: 14.391000000000002
          - type: map_at_3
            value: 7.66
          - type: map_at_5
            value: 9.46
          - type: mrr_at_1
            value: 19.8
          - type: mrr_at_10
            value: 31.958
          - type: mrr_at_100
            value: 33.373999999999995
          - type: mrr_at_1000
            value: 33.411
          - type: mrr_at_3
            value: 28.316999999999997
          - type: mrr_at_5
            value: 30.297
          - type: ndcg_at_1
            value: 19.8
          - type: ndcg_at_10
            value: 19.580000000000002
          - type: ndcg_at_100
            value: 29.555999999999997
          - type: ndcg_at_1000
            value: 35.882
          - type: ndcg_at_3
            value: 17.544
          - type: ndcg_at_5
            value: 15.815999999999999
          - type: precision_at_1
            value: 19.8
          - type: precision_at_10
            value: 10.61
          - type: precision_at_100
            value: 2.501
          - type: precision_at_1000
            value: 0.40099999999999997
          - type: precision_at_3
            value: 16.900000000000002
          - type: precision_at_5
            value: 14.44
          - type: recall_at_1
            value: 3.9849999999999994
          - type: recall_at_10
            value: 21.497
          - type: recall_at_100
            value: 50.727999999999994
          - type: recall_at_1000
            value: 81.27499999999999
          - type: recall_at_3
            value: 10.263
          - type: recall_at_5
            value: 14.643
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 85.0087509585503
          - type: cos_sim_spearman
            value: 81.74697270664319
          - type: euclidean_pearson
            value: 81.80424382731947
          - type: euclidean_spearman
            value: 81.29794251968431
          - type: manhattan_pearson
            value: 81.81524666226125
          - type: manhattan_spearman
            value: 81.29475370198963
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 86.44442736429552
          - type: cos_sim_spearman
            value: 78.51011398910948
          - type: euclidean_pearson
            value: 83.36181801196723
          - type: euclidean_spearman
            value: 79.47272621331535
          - type: manhattan_pearson
            value: 83.3660113483837
          - type: manhattan_spearman
            value: 79.47695922566032
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 85.82923943323635
          - type: cos_sim_spearman
            value: 86.62037823380983
          - type: euclidean_pearson
            value: 83.56369548403958
          - type: euclidean_spearman
            value: 84.2176755481191
          - type: manhattan_pearson
            value: 83.55460702084464
          - type: manhattan_spearman
            value: 84.18617930921467
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 84.09071068110103
          - type: cos_sim_spearman
            value: 83.05697553913335
          - type: euclidean_pearson
            value: 81.1377457216497
          - type: euclidean_spearman
            value: 81.74714169016676
          - type: manhattan_pearson
            value: 81.0893424142723
          - type: manhattan_spearman
            value: 81.7058918219677
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 87.61132157220429
          - type: cos_sim_spearman
            value: 88.38581627185445
          - type: euclidean_pearson
            value: 86.14904510913374
          - type: euclidean_spearman
            value: 86.5452758925542
          - type: manhattan_pearson
            value: 86.1484025377679
          - type: manhattan_spearman
            value: 86.55483841566252
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.46195145161064
          - type: cos_sim_spearman
            value: 86.82409112251158
          - type: euclidean_pearson
            value: 84.75479672288957
          - type: euclidean_spearman
            value: 85.41144307151548
          - type: manhattan_pearson
            value: 84.70914329694165
          - type: manhattan_spearman
            value: 85.38477943384089
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.06351289930238
          - type: cos_sim_spearman
            value: 87.90311138579116
          - type: euclidean_pearson
            value: 86.17651467063077
          - type: euclidean_spearman
            value: 84.89447802019073
          - type: manhattan_pearson
            value: 86.3267677479595
          - type: manhattan_spearman
            value: 85.00472295103874
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 67.78311975978767
          - type: cos_sim_spearman
            value: 66.76465685245887
          - type: euclidean_pearson
            value: 67.21687806595443
          - type: euclidean_spearman
            value: 65.05776733534435
          - type: manhattan_pearson
            value: 67.14008143635883
          - type: manhattan_spearman
            value: 65.25247076149701
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 86.7403488889418
          - type: cos_sim_spearman
            value: 87.76870289783061
          - type: euclidean_pearson
            value: 84.83171077794671
          - type: euclidean_spearman
            value: 85.50579695091902
          - type: manhattan_pearson
            value: 84.83074260180555
          - type: manhattan_spearman
            value: 85.47589026938667
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 87.56234016237356
          - type: mrr
            value: 96.26124238869338
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 59.660999999999994
          - type: map_at_10
            value: 69.105
          - type: map_at_100
            value: 69.78
          - type: map_at_1000
            value: 69.80199999999999
          - type: map_at_3
            value: 65.991
          - type: map_at_5
            value: 68.02
          - type: mrr_at_1
            value: 62.666999999999994
          - type: mrr_at_10
            value: 70.259
          - type: mrr_at_100
            value: 70.776
          - type: mrr_at_1000
            value: 70.796
          - type: mrr_at_3
            value: 67.889
          - type: mrr_at_5
            value: 69.52199999999999
          - type: ndcg_at_1
            value: 62.666999999999994
          - type: ndcg_at_10
            value: 73.425
          - type: ndcg_at_100
            value: 75.955
          - type: ndcg_at_1000
            value: 76.459
          - type: ndcg_at_3
            value: 68.345
          - type: ndcg_at_5
            value: 71.319
          - type: precision_at_1
            value: 62.666999999999994
          - type: precision_at_10
            value: 9.667
          - type: precision_at_100
            value: 1.09
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 26.333000000000002
          - type: precision_at_5
            value: 17.732999999999997
          - type: recall_at_1
            value: 59.660999999999994
          - type: recall_at_10
            value: 85.422
          - type: recall_at_100
            value: 96.167
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 72.044
          - type: recall_at_5
            value: 79.428
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.86435643564356
          - type: cos_sim_ap
            value: 96.83057412333741
          - type: cos_sim_f1
            value: 93.04215337734891
          - type: cos_sim_precision
            value: 94.53044375644994
          - type: cos_sim_recall
            value: 91.60000000000001
          - type: dot_accuracy
            value: 99.7910891089109
          - type: dot_ap
            value: 94.10681982106397
          - type: dot_f1
            value: 89.34881373043918
          - type: dot_precision
            value: 90.21406727828746
          - type: dot_recall
            value: 88.5
          - type: euclidean_accuracy
            value: 99.85544554455446
          - type: euclidean_ap
            value: 96.78545104478602
          - type: euclidean_f1
            value: 92.65143992055613
          - type: euclidean_precision
            value: 92.01183431952663
          - type: euclidean_recall
            value: 93.30000000000001
          - type: manhattan_accuracy
            value: 99.85841584158416
          - type: manhattan_ap
            value: 96.80748903307823
          - type: manhattan_f1
            value: 92.78247884519662
          - type: manhattan_precision
            value: 92.36868186323092
          - type: manhattan_recall
            value: 93.2
          - type: max_accuracy
            value: 99.86435643564356
          - type: max_ap
            value: 96.83057412333741
          - type: max_f1
            value: 93.04215337734891
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 65.53971025855282
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 33.97791591490788
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.852215301355066
          - type: mrr
            value: 56.85527809608691
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.21442519856758
          - type: cos_sim_spearman
            value: 30.822536216936825
          - type: dot_pearson
            value: 28.661325528121807
          - type: dot_spearman
            value: 28.1435226478879
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.183
          - type: map_at_10
            value: 1.526
          - type: map_at_100
            value: 7.915
          - type: map_at_1000
            value: 19.009
          - type: map_at_3
            value: 0.541
          - type: map_at_5
            value: 0.8659999999999999
          - type: mrr_at_1
            value: 68
          - type: mrr_at_10
            value: 81.186
          - type: mrr_at_100
            value: 81.186
          - type: mrr_at_1000
            value: 81.186
          - type: mrr_at_3
            value: 80
          - type: mrr_at_5
            value: 80.9
          - type: ndcg_at_1
            value: 64
          - type: ndcg_at_10
            value: 64.13799999999999
          - type: ndcg_at_100
            value: 47.632000000000005
          - type: ndcg_at_1000
            value: 43.037
          - type: ndcg_at_3
            value: 67.542
          - type: ndcg_at_5
            value: 67.496
          - type: precision_at_1
            value: 68
          - type: precision_at_10
            value: 67.80000000000001
          - type: precision_at_100
            value: 48.980000000000004
          - type: precision_at_1000
            value: 19.036
          - type: precision_at_3
            value: 72
          - type: precision_at_5
            value: 71.2
          - type: recall_at_1
            value: 0.183
          - type: recall_at_10
            value: 1.799
          - type: recall_at_100
            value: 11.652999999999999
          - type: recall_at_1000
            value: 40.086
          - type: recall_at_3
            value: 0.5930000000000001
          - type: recall_at_5
            value: 0.983
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.29
          - type: map_at_10
            value: 9.489
          - type: map_at_100
            value: 15.051
          - type: map_at_1000
            value: 16.561999999999998
          - type: map_at_3
            value: 5.137
          - type: map_at_5
            value: 6.7989999999999995
          - type: mrr_at_1
            value: 28.571
          - type: mrr_at_10
            value: 45.699
          - type: mrr_at_100
            value: 46.461000000000006
          - type: mrr_at_1000
            value: 46.461000000000006
          - type: mrr_at_3
            value: 41.837
          - type: mrr_at_5
            value: 43.163000000000004
          - type: ndcg_at_1
            value: 23.469
          - type: ndcg_at_10
            value: 23.544999999999998
          - type: ndcg_at_100
            value: 34.572
          - type: ndcg_at_1000
            value: 46.035
          - type: ndcg_at_3
            value: 27.200000000000003
          - type: ndcg_at_5
            value: 25.266
          - type: precision_at_1
            value: 28.571
          - type: precision_at_10
            value: 22.041
          - type: precision_at_100
            value: 7.3469999999999995
          - type: precision_at_1000
            value: 1.484
          - type: precision_at_3
            value: 29.932
          - type: precision_at_5
            value: 26.531
          - type: recall_at_1
            value: 2.29
          - type: recall_at_10
            value: 15.895999999999999
          - type: recall_at_100
            value: 45.518
          - type: recall_at_1000
            value: 80.731
          - type: recall_at_3
            value: 6.433
          - type: recall_at_5
            value: 9.484
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.4178
          - type: ap
            value: 14.575240629602373
          - type: f1
            value: 55.02449563229096
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 60.00282965478212
          - type: f1
            value: 60.34413028768773
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 50.409448342549936
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.62591643321214
          - type: cos_sim_ap
            value: 79.28766491329633
          - type: cos_sim_f1
            value: 71.98772064466617
          - type: cos_sim_precision
            value: 69.8609731876862
          - type: cos_sim_recall
            value: 74.24802110817942
          - type: dot_accuracy
            value: 84.75293556654945
          - type: dot_ap
            value: 69.72705761174353
          - type: dot_f1
            value: 65.08692852543464
          - type: dot_precision
            value: 63.57232704402516
          - type: dot_recall
            value: 66.6754617414248
          - type: euclidean_accuracy
            value: 87.44710019669786
          - type: euclidean_ap
            value: 79.11021477292638
          - type: euclidean_f1
            value: 71.5052389470994
          - type: euclidean_precision
            value: 69.32606541129832
          - type: euclidean_recall
            value: 73.82585751978891
          - type: manhattan_accuracy
            value: 87.42325803182929
          - type: manhattan_ap
            value: 79.05094494327616
          - type: manhattan_f1
            value: 71.36333985649055
          - type: manhattan_precision
            value: 70.58064516129032
          - type: manhattan_recall
            value: 72.16358839050132
          - type: max_accuracy
            value: 87.62591643321214
          - type: max_ap
            value: 79.28766491329633
          - type: max_f1
            value: 71.98772064466617
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.85202002561415
          - type: cos_sim_ap
            value: 85.9835303311168
          - type: cos_sim_f1
            value: 78.25741142443962
          - type: cos_sim_precision
            value: 73.76635768811342
          - type: cos_sim_recall
            value: 83.3307668617185
          - type: dot_accuracy
            value: 88.20584468506229
          - type: dot_ap
            value: 83.591632302697
          - type: dot_f1
            value: 76.81739705396173
          - type: dot_precision
            value: 73.45275728837373
          - type: dot_recall
            value: 80.50508161379734
          - type: euclidean_accuracy
            value: 88.64633057787093
          - type: euclidean_ap
            value: 85.25705123182283
          - type: euclidean_f1
            value: 77.18535726329199
          - type: euclidean_precision
            value: 75.17699437997226
          - type: euclidean_recall
            value: 79.30397289805975
          - type: manhattan_accuracy
            value: 88.63274731245392
          - type: manhattan_ap
            value: 85.2376825633018
          - type: manhattan_f1
            value: 77.15810785937788
          - type: manhattan_precision
            value: 73.92255061014319
          - type: manhattan_recall
            value: 80.68986757006468
          - type: max_accuracy
            value: 88.85202002561415
          - type: max_ap
            value: 85.9835303311168
          - type: max_f1
            value: 78.25741142443962

ember-v1

This model has been trained on an extensive corpus of text pairs that encompass a broad spectrum of domains, including finance, science, medicine, law, and various others. During the training process, we incorporated techniques derived from the RetroMAE and SetFit research papers.

Plans

  • The research paper will be published soon.
  • The v2 of the model is currently in development and will feature an extended maximum sequence length of 4,000 tokens.

Usage

Use with transformers:

import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel

def average_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]

input_texts = [
    "This is an example sentence",
    "Each sentence is converted"
]

tokenizer = AutoTokenizer.from_pretrained("llmrails/ember-v1")
model = AutoModel.from_pretrained("llmrails/ember-v1")

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())

Use with sentence-transformers:

from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = [
    "This is an example sentence",
    "Each sentence is converted"
]

model = SentenceTransformer('llmrails/ember-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))

Massive Text Embedding Benchmark (MTEB) Evaluation

Our model achieve state-of-the-art performance on MTEB leaderboard

Model Name Dimension Sequence Length Average (56)
ember-v1 1024 512 63.54
bge-large-en-v1.5 1024 512 63.23
bge-base-en-v1.5 768 512 63.05
text-embedding-ada-002 1536 8191 60.99

Limitation

This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.

License

MIT

Citation

@misc{nur2024emberv1,
      title={ember-v1: SOTA embedding model}, 
      author={Enrike Nur and Anar Aliyev},
      year={2023},
}