license: apache-2.0
Model Card for Model ID
slim-sql-1b-v0 is part of the slim model series.
Benchmark Tests
Evaluated against 100 test SQL queries with under 100 characters. 1 point given for exact string match, 0 given for incorrect answer.
--Accuracy Score: 86 correct out of 100
- 8 incorrect answers attributed to query structure ordering or naming convention differences
- 6 incorrect answers attributed to incorrect variable selection or aggregate function use
Model Description
- Developed by: llmware
- Model type: TinyLlama
- Language(s) (NLP): English
- License: apache-2.0
- Finetuned from model: TinyLlama-1.1b - 2.5T checkpoint
Direct Use
slim is designed for...
Bias, Risks, and Limitations
Any model can provide inaccurate or incomplete information, and should be used in conjunction with appropriate safeguards and fact-checking mechanisms.
How to Get Started with the Model
The fastest way to get started with slim is through direct import in transformers:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("slim-sql-1b-v0")
model = AutoModelForCausalLM.from_pretrained("slim-sql-1b-v0")
Please refer to the generation_test.py files in the Files repository, which includes 100 samples and script to test the model.
The sql-slim model was fine-tuned with a simple "<human> and <bot> wrapper", so to get the best results, wrap inference entries as:
full_prompt = "<human>: " + my_prompt + "\n" + "<bot>:"
The prompt consists of two sub-parts:
- Table creation prompt providing table name, variables, and variable type.
- Specific question or instruction based on the text passage
Training sample example: "text": ": CREATE TABLE table_name_8 ( partner VARCHAR, date VARCHAR )\nName the partner for may 2, 1993\n:SELECT partner FROM table_name_8 WHERE date = "may 2, 1993""} {"text": ": CREATE TABLE table_name_97 ( Id VARCHAR )\nName the 2012 when 2011 is qf\n:SELECT 2012 FROM table_name_97 WHERE 2011 = "qf""
Test samples are provided in this repo ("sql-slim-1b_test_questions")
If you are using a HuggingFace generation script:
# prepare prompt packaging used in fine-tuning process
new_prompt = "<human>: " + entries["context"] + "\n" + entries["query"] + "\n" + "<bot>:"
inputs = tokenizer(new_prompt, return_tensors="pt")
start_of_output = len(inputs.input_ids[0])
# temperature: set at 0.3 for consistency of output
# max_new_tokens: set at 100 - may prematurely stop a few of the summaries
outputs = model.generate(
inputs.input_ids.to(device),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.3,
max_new_tokens=100,
)
output_only = tokenizer.decode(outputs[0][start_of_output:],skip_special_tokens=True)
Model Card Contact
Dylan Oberst & llmware team