kcz358's picture
Upload tokenizer
be95b3e verified
---
datasets:
- lmms-lab/LLaVA-OneVision-Data
language:
- en
- zh
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
model-index:
- name: llava-onevision-qwen-0.5b-ov
results:
- task:
type: multimodal
dataset:
name: AI2D
type: ai2d
metrics:
- type: accuracy
value: 57.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ChartQA
type: chartqa
metrics:
- type: accuracy
value: 61.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: DocVQA
type: docvqa
metrics:
- type: accuracy
value: 73.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: InfoVQA
type: infovqa
metrics:
- type: accuracy
value: 46.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MathVerse
type: mathverse
metrics:
- type: accuracy
value: 17.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MathVista
type: mathvista
metrics:
- type: accuracy
value: 34.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMBench
type: mmbench
metrics:
- type: accuracy
value: 52.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MME-Perception
type: mme-perception
metrics:
- type: score
value: 1238
name: score
verified: true
- task:
type: multimodal
dataset:
name: MME-Cognition
type: mme-cognition
metrics:
- type: score
value: 240
name: score
verified: true
- task:
type: multimodal
dataset:
name: MMMU
type: mmmu
metrics:
- type: accuracy
value: 31.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMVet
type: mmvet
metrics:
- type: accuracy
value: 29.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMStar
type: mmstar
metrics:
- type: accuracy
value: 37.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Seed-Bench
type: seed-bench
metrics:
- type: accuracy
value: 65.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Science-QA
type: science-qa
metrics:
- type: accuracy
value: 67.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ImageDC
type: imagedc
metrics:
- type: accuracy
value: 83.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMLBench
type: mmlbench
metrics:
- type: accuracy
value: 49.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: RealWorldQA
type: realworldqa
metrics:
- type: accuracy
value: 55.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Vibe-Eval
type: vibe-eval
metrics:
- type: accuracy
value: 33.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LLaVA-W
type: llava-w
metrics:
- type: accuracy
value: 74.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: L-Wilder
type: l-wilder
metrics:
- type: accuracy
value: 55.0
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ActNet-QA
type: actnet-qa
metrics:
- type: accuracy
value: 50.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: EgoSchema
type: egoschema
metrics:
- type: accuracy
value: 26.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MLVU
type: mlvu
metrics:
- type: accuracy
value: 50.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MVBench
type: mvbench
metrics:
- type: accuracy
value: 45.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: NextQA
type: nextqa
metrics:
- type: accuracy
value: 57.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: PercepTest
type: percepTest
metrics:
- type: accuracy
value: 49.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: SeedBench
type: seedbench
metrics:
- type: accuracy
value: 44.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoChatGPT
type: videochatgpt
metrics:
- type: score
value: 3.12
name: score
verified: true
- task:
type: multimodal
dataset:
name: VideoDC
type: videodc
metrics:
- type: score
value: 3.55
name: score
verified: true
- task:
type: multimodal
dataset:
name: VideoMME
type: videomme
metrics:
- type: accuracy
value: 44.0
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Image Edit Instruction
type: iei
metrics:
- type: accuracy
value: 17.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MI-VQA
type: mi-vqa
metrics:
- type: accuracy
value: 48.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: NLVR2
type: nlvr2
metrics:
- type: accuracy
value: 63.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Puzzle
type: puzzle
metrics:
- type: accuracy
value: 35.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Q-Bench
type: q-bench
metrics:
- type: accuracy
value: 48.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Spot-Diff
type: spot-diff
metrics:
- type: accuracy
value: 36.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: TR-VQA
type: tr-vqa
metrics:
- type: accuracy
value: 65.0
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VST
type: vst
metrics:
- type: accuracy
value: 29.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ScanNet-Chat
type: scannet-chat
metrics:
- type: accuracy
value: 60.0
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ScanNet-TD
type: scannet-td
metrics:
- type: accuracy
value: 48.0
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ScanQA
type: scanqa
metrics:
- type: accuracy
value: 29.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ALFRED
type: alfred
metrics:
- type: accuracy
value: 62.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: nuScenesVQA
type: nuscenesvqa
metrics:
- type: accuracy
value: 70.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: BLINK
type: blink
metrics:
- type: accuracy
value: 52.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Mantis
type: mantis
metrics:
- type: accuracy
value: 39.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MathVerse-mv
type: mathverse-mv
metrics:
- type: accuracy
value: 60.0
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MuirBench
type: muirbench
metrics:
- type: accuracy
value: 25.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: SciVerse-mv
type: sciverse-mv
metrics:
- type: accuracy
value: 29.1
name: accuracy
verified: true
---
# LLaVA-OneVision
![banner](https://i.postimg.cc/pL17YtG4/WX20240508-220230-2x.png)
Play with the model on the [LLaVA OneVision Chat](https://llava-onevision.lmms-lab.com/).
## Table of Contents
1. [Model Summary](##model-summary)
2. [Use](##use)
3. [Limitations](##limitations)
4. [Training](##training)
5. [License](##license)
6. [Citation](##citation)
## Model Summary
The LLaVA-OneVision models are 0.5/7/72B parameter models trained on [LLaVA-OneVision](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), based on Qwen2 language model with a context window of 32K tokens.
- **Repository:** [LLaVA-VL/LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file)
- **Project Website:** [llava-onevision.lmms-lab.com](llava-onevision.lmms-lab.com)
- **Paper:** [LLaVA-OneVision]()
- **Point of Contact:** [Bo Li](mailto:[email protected])
- **Languages:** English, Chinese
## Use
### Intended use
The model was trained on [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data) and have the ability to interact with images, multi-image and videos.
**Feel free to share your generations in the Community tab!**
### Generation
We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/LLaVA-VL/LLaVA-NeXT).
```python
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
warnings.filterwarnings("ignore")
pretrained = "lmms-lab/llava-onevision-qwen2-0.5b-ov"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)
```
# Training
## Model
- **Architecture:** SO400M + Qwen2
- **Pretraining Stage:** LCS-558K, 1 epoch, projector
- **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
- **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model
- **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
- **Precision:** bfloat16
## Hardware & Software
- **GPUs:** 256 * Nvidia Tesla A100 (for whole model series training)
- **Orchestration:** [Huggingface Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
# Citation
```
@article{li2024llavaonevision,
title={LLaVA-OneVision},
}
```