Model Card of lmqg/mt5-base-itquad-qg-ae
This model is fine-tuned version of google/mt5-base for question generation and answer extraction jointly on the lmqg/qg_itquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-base
- Language: it
- Training data: lmqg/qg_itquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="it", model="lmqg/mt5-base-itquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-itquad-qg-ae")
# answer extraction
answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
# question generation
question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 81.15 | default | lmqg/qg_itquad |
Bleu_1 | 23.3 | default | lmqg/qg_itquad |
Bleu_2 | 15.39 | default | lmqg/qg_itquad |
Bleu_3 | 10.74 | default | lmqg/qg_itquad |
Bleu_4 | 7.72 | default | lmqg/qg_itquad |
METEOR | 18.56 | default | lmqg/qg_itquad |
MoverScore | 57.15 | default | lmqg/qg_itquad |
ROUGE_L | 22.81 | default | lmqg/qg_itquad |
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 81.98 | default | lmqg/qg_itquad |
QAAlignedF1Score (MoverScore) | 56.35 | default | lmqg/qg_itquad |
QAAlignedPrecision (BERTScore) | 81.19 | default | lmqg/qg_itquad |
QAAlignedPrecision (MoverScore) | 56 | default | lmqg/qg_itquad |
QAAlignedRecall (BERTScore) | 82.83 | default | lmqg/qg_itquad |
QAAlignedRecall (MoverScore) | 56.75 | default | lmqg/qg_itquad |
- Metric (Answer Extraction): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 60.7 | default | lmqg/qg_itquad |
AnswerF1Score | 74.04 | default | lmqg/qg_itquad |
BERTScore | 91.12 | default | lmqg/qg_itquad |
Bleu_1 | 40.14 | default | lmqg/qg_itquad |
Bleu_2 | 34.56 | default | lmqg/qg_itquad |
Bleu_3 | 30.56 | default | lmqg/qg_itquad |
Bleu_4 | 26.87 | default | lmqg/qg_itquad |
METEOR | 43.51 | default | lmqg/qg_itquad |
MoverScore | 82.62 | default | lmqg/qg_itquad |
ROUGE_L | 45.82 | default | lmqg/qg_itquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 13
- batch: 32
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train lmqg/mt5-base-itquad-qg-ae
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_itquadself-reported7.720
- ROUGE-L (Question Generation) on lmqg/qg_itquadself-reported22.810
- METEOR (Question Generation) on lmqg/qg_itquadself-reported18.560
- BERTScore (Question Generation) on lmqg/qg_itquadself-reported81.150
- MoverScore (Question Generation) on lmqg/qg_itquadself-reported57.150
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquadself-reported81.980
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquadself-reported82.830
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquadself-reported81.190
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquadself-reported56.350
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquadself-reported56.750