metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: it
datasets:
- lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per
riflettere tale deprezzamento.
example_title: Question Generation Example 1
- text: >-
L' individuazione del petrolio e lo sviluppo di nuovi giacimenti
richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una
produzione significativa.
example_title: Question Generation Example 2
- text: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo.
example_title: Question Generation Example 3
model-index:
- name: lmqg/mt5-base-itquad
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_itquad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.07701528877424803
- name: ROUGE-L
type: rouge-l
value: 0.22511430414292052
- name: METEOR
type: meteor
value: 0.17997929735967222
- name: BERTScore
type: bertscore
value: 0.8116317604756539
- name: MoverScore
type: moverscore
value: 0.5711254911196173
Language Models Fine-tuning on Question Generation: lmqg/mt5-base-itquad
This model is fine-tuned version of google/mt5-base for question generation task on the lmqg/qg_itquad (dataset_name: default).
Overview
- Language model: google/mt5-base
- Language: it
- Training data: lmqg/qg_itquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: TBA
Usage
from transformers import pipeline
model_path = 'lmqg/mt5-base-itquad'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
question = pipe('<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.')
Evaluation Metrics
Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_itquad | default | 0.077 | 0.225 | 0.18 | 0.812 | 0.571 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 11
- batch: 4
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
TBA