mt5-base-itquad-qg / README.md
asahi417's picture
model update
10c3818
|
raw
history blame
3.37 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: it
datasets:
  - lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per
      riflettere tale deprezzamento.
    example_title: Question Generation Example 1
  - text: >-
      L' individuazione del petrolio e lo sviluppo di nuovi giacimenti
      richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una
      produzione significativa.
    example_title: Question Generation Example 2
  - text: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mt5-base-itquad
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_itquad
          type: default
          args: default
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.07701528877424803
          - name: ROUGE-L
            type: rouge-l
            value: 0.22511430414292052
          - name: METEOR
            type: meteor
            value: 0.17997929735967222
          - name: BERTScore
            type: bertscore
            value: 0.8116317604756539
          - name: MoverScore
            type: moverscore
            value: 0.5711254911196173

Language Models Fine-tuning on Question Generation: lmqg/mt5-base-itquad

This model is fine-tuned version of google/mt5-base for question generation task on the lmqg/qg_itquad (dataset_name: default).

Overview

Usage


from transformers import pipeline

model_path = 'lmqg/mt5-base-itquad'
pipe = pipeline("text2text-generation", model_path)

# Question Generation
question = pipe('<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.')

Evaluation Metrics

Metrics

Dataset Type BLEU4 ROUGE-L METEOR BERTScore MoverScore Link
lmqg/qg_itquad default 0.077 0.225 0.18 0.812 0.571 link

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_itquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-base
  • max_length: 512
  • max_length_output: 32
  • epoch: 11
  • batch: 4
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 16
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

TBA