|
|
|
--- |
|
license: cc-by-4.0 |
|
metrics: |
|
- bleu4 |
|
- meteor |
|
- rouge-l |
|
- bertscore |
|
- moverscore |
|
language: ru |
|
datasets: |
|
- lmqg/qag_ruquad |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- questions and answers generation |
|
widget: |
|
- text: "Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов." |
|
example_title: "Questions & Answers Generation Example 1" |
|
model-index: |
|
- name: lmqg/mt5-base-ruquad-qag |
|
results: |
|
- task: |
|
name: Text2text Generation |
|
type: text2text-generation |
|
dataset: |
|
name: lmqg/qag_ruquad |
|
type: default |
|
args: default |
|
metrics: |
|
- name: BLEU4 (Question & Answer Generation) |
|
type: bleu4_question_answer_generation |
|
value: 2.12 |
|
- name: ROUGE-L (Question & Answer Generation) |
|
type: rouge_l_question_answer_generation |
|
value: 13.12 |
|
- name: METEOR (Question & Answer Generation) |
|
type: meteor_question_answer_generation |
|
value: 16.85 |
|
- name: BERTScore (Question & Answer Generation) |
|
type: bertscore_question_answer_generation |
|
value: 62.3 |
|
- name: MoverScore (Question & Answer Generation) |
|
type: moverscore_question_answer_generation |
|
value: 50.58 |
|
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation) |
|
type: qa_aligned_f1_score_bertscore_question_answer_generation |
|
value: 74.63 |
|
- name: QAAlignedRecall-BERTScore (Question & Answer Generation) |
|
type: qa_aligned_recall_bertscore_question_answer_generation |
|
value: 75.38 |
|
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation) |
|
type: qa_aligned_precision_bertscore_question_answer_generation |
|
value: 73.97 |
|
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation) |
|
type: qa_aligned_f1_score_moverscore_question_answer_generation |
|
value: 54.24 |
|
- name: QAAlignedRecall-MoverScore (Question & Answer Generation) |
|
type: qa_aligned_recall_moverscore_question_answer_generation |
|
value: 54.65 |
|
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation) |
|
type: qa_aligned_precision_moverscore_question_answer_generation |
|
value: 53.91 |
|
--- |
|
|
|
# Model Card of `lmqg/mt5-base-ruquad-qag` |
|
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question & answer pair generation task on the [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). |
|
|
|
|
|
### Overview |
|
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base) |
|
- **Language:** ru |
|
- **Training data:** [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) (default) |
|
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/) |
|
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) |
|
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) |
|
|
|
### Usage |
|
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) |
|
```python |
|
from lmqg import TransformersQG |
|
|
|
# initialize model |
|
model = TransformersQG(language="ru", model="lmqg/mt5-base-ruquad-qag") |
|
|
|
# model prediction |
|
question_answer_pairs = model.generate_qa("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.") |
|
|
|
``` |
|
|
|
- With `transformers` |
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text2text-generation", "lmqg/mt5-base-ruquad-qag") |
|
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.") |
|
|
|
``` |
|
|
|
## Evaluation |
|
|
|
|
|
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-ruquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_ruquad.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:--------------------------------|--------:|:--------|:-------------------------------------------------------------------| |
|
| BERTScore | 62.3 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| Bleu_1 | 7.51 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| Bleu_2 | 4.33 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| Bleu_3 | 2.92 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| Bleu_4 | 2.12 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| METEOR | 16.85 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| MoverScore | 50.58 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| QAAlignedF1Score (BERTScore) | 74.63 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| QAAlignedF1Score (MoverScore) | 54.24 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| QAAlignedPrecision (BERTScore) | 73.97 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| QAAlignedPrecision (MoverScore) | 53.91 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| QAAlignedRecall (BERTScore) | 75.38 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| QAAlignedRecall (MoverScore) | 54.65 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
| ROUGE_L | 13.12 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | |
|
|
|
|
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during fine-tuning: |
|
- dataset_path: lmqg/qag_ruquad |
|
- dataset_name: default |
|
- input_types: ['paragraph'] |
|
- output_types: ['questions_answers'] |
|
- prefix_types: None |
|
- model: google/mt5-base |
|
- max_length: 512 |
|
- max_length_output: 256 |
|
- epoch: 12 |
|
- batch: 2 |
|
- lr: 0.0005 |
|
- fp16: False |
|
- random_seed: 1 |
|
- gradient_accumulation_steps: 32 |
|
- label_smoothing: 0.0 |
|
|
|
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-ruquad-qag/raw/main/trainer_config.json). |
|
|
|
## Citation |
|
``` |
|
@inproceedings{ushio-etal-2022-generative, |
|
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", |
|
author = "Ushio, Asahi and |
|
Alva-Manchego, Fernando and |
|
Camacho-Collados, Jose", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, U.A.E.", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |
|
|