mt5-small-itquad-qg / README.md
asahi417's picture
model update
0ed5988
|
raw
history blame
6.17 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: it
datasets:
  - lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per
      riflettere tale deprezzamento.
    example_title: Question Generation Example 1
  - text: >-
      L' individuazione del petrolio e lo sviluppo di nuovi giacimenti
      richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una
      produzione significativa.
    example_title: Question Generation Example 2
  - text: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mt5-small-itquad
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_itquad
          type: default
          args: default
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.07374845292566005
          - name: ROUGE-L
            type: rouge-l
            value: 0.2192586325405669
          - name: METEOR
            type: meteor
            value: 0.17566508622690377
          - name: BERTScore
            type: bertscore
            value: 0.8079826348452711
          - name: MoverScore
            type: moverscore
            value: 0.5678645897809871
          - name: QAAlignedF1Score (BERTScore)
            type: qa_aligned_f1_score_bertscore
            value: 0.8765991201044532
          - name: QAAlignedRecall (BERTScore)
            type: qa_aligned_recall_bertscore
            value: 0.8756835624108968
          - name: QAAlignedPrecision (BERTScore)
            type: qa_aligned_precision_bertscore
            value: 0.8775774317719396
          - name: QAAlignedF1Score (MoverScore)
            type: qa_aligned_f1_score_moverscore
            value: 0.6159932763253269
          - name: QAAlignedRecall (MoverScore)
            type: qa_aligned_recall_moverscore
            value: 0.6147827598143782
          - name: QAAlignedPrecision (MoverScore)
            type: qa_aligned_precision_moverscore
            value: 0.6172606032852155

Model Card of lmqg/mt5-small-itquad

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_itquad (dataset_name: default) via lmqg.

Please cite our paper if you use the model (https://arxiv.org/abs/2210.03992).


@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

Overview

Usage


from lmqg import TransformersQG
# initialize model
model = TransformersQG(language='it', model='lmqg/mt5-small-itquad')
# model prediction
question = model.generate_q(list_context=["Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."], list_answer=["Dopo il 1971"])
  • With transformers

from transformers import pipeline
# initialize model
pipe = pipeline("text2text-generation", 'lmqg/mt5-small-itquad')
# question generation
question = pipe('<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.')

Evaluation Metrics

Metrics

Dataset Type BLEU4 ROUGE-L METEOR BERTScore MoverScore Link
lmqg/qg_itquad default 0.074 0.219 0.176 0.808 0.568 link

Metrics (QAG)

Dataset Type QA Aligned F1 Score (BERTScore) QA Aligned F1 Score (MoverScore) Link
lmqg/qg_itquad default 0.877 0.616 link

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_itquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 15
  • batch: 16
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 4
  • label_smoothing: 0.0

The full configuration can be found at fine-tuning config file.

Citation


@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}