Model Card of lmqg/mt5-small-squad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_squad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/mt5-small-squad-qg")

# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-squad-qg")
output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

Evaluation

Score Type Dataset
BERTScore 90.01 default lmqg/qg_squad
Bleu_1 54.07 default lmqg/qg_squad
Bleu_2 37.62 default lmqg/qg_squad
Bleu_3 28.18 default lmqg/qg_squad
Bleu_4 21.65 default lmqg/qg_squad
METEOR 23.83 default lmqg/qg_squad
MoverScore 62.75 default lmqg/qg_squad
ROUGE_L 48.95 default lmqg/qg_squad
  • Metrics (Question Generation, Out-of-Domain)
Dataset Type BERTScore Bleu_4 METEOR MoverScore ROUGE_L Link
lmqg/qg_dequad default 73.53 0.0 4.81 50.37 1.56 link
lmqg/qg_esquad default 74.94 0.59 6.02 50.62 5.21 link
lmqg/qg_frquad default 72.91 1.71 8.24 50.96 15.84 link
lmqg/qg_itquad default 72.6 0.54 5.89 50.23 5.01 link
lmqg/qg_jaquad default 66.08 0.0 0.51 46.53 6.08 link
lmqg/qg_koquad default 66.34 0.0 0.73 45.86 0.06 link
lmqg/qg_ruquad default 70.89 0.0 1.78 49.1 0.99 link

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_squad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 15
  • batch: 64
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lmqg/mt5-small-squad-qg

Evaluation results