File size: 17,956 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
"""
Load tokenizer to encode & decode

Modified from tensorflow_datasets.features.text.*
Reference: https://www.tensorflow.org/datasets/api_docs/python/tfds/features/text_lib

Authors:
  * Heng-Jui Chang 2022
"""

import abc
import re
import tempfile
from typing import List

# Replacing the 2 tokens right before english starts as <eos> & <unk>
BERT_FIRST_IDX = 997
# Drop rest of tokens
BERT_LAST_IDX = 29635

# Default vocabularies
CHARACTER_VOCAB = list(" 'ABCDEFGHIJKLMNOPQRSTUVWXYZ")
PHONEME_VOCAB = "SIL SPN AA0 AA1 AA2 AE0 AE1 AE2 AH0 AH1 AH2 AO0 AO1 AO2 AW0 AW1 AW2 AY0 AY1 AY2 B CH D DH EH0 EH1 EH2 ER0 ER1 ER2 EY0 EY1 EY2 F G HH IH0 IH1 IH2 IY0 IY1 IY2 JH K L M N NG OW0 OW1 OW2 OY0 OY1 OY2 P R S SH T TH UH0 UH1 UH2 UW0 UW1 UW2 V W Y Z ZH".split(
    " "
)


__all__ = [
    "CharacterTokenizer",
    "CharacterSlotTokenizer",
    "SubwordTokenizer",
    "SubwordSlotTokenizer",
    "WordTokenizer",
    "PhonemeTokenizer",
    "load_tokenizer",
    "default_phoneme_tokenizer",
]


class Tokenizer:
    def __init__(self):
        super().__init__()

    @abc.abstractmethod
    def encode(self, text: str, iob: str = None) -> List[int]:
        raise NotImplementedError

    @abc.abstractmethod
    def decode(self, idxs: List[int], ignore_repeat: bool = False) -> str:
        raise NotImplementedError

    def __len__(self):
        return self.vocab_size

    @abc.abstractproperty
    def vocab_size(self) -> int:
        raise NotImplementedError

    @abc.abstractproperty
    def token_type(self) -> str:
        raise NotImplementedError

    @abc.abstractclassmethod
    def load_from_file(cls, vocab_file: str):
        raise NotImplementedError

    @property
    def pad_idx(self) -> int:
        return 0

    @property
    def eos_idx(self) -> int:
        return 1

    @property
    def unk_idx(self) -> int:
        return 2

    def __repr__(self) -> str:
        return "<{} vocab_size={}>".format(type(self).__name__, self.vocab_size)


class CharacterTokenizer(Tokenizer):
    """Character tokenizer."""

    def __init__(self, vocab_list: List[str] = None):
        super().__init__()

        if vocab_list is None:
            vocab_list = CHARACTER_VOCAB

        for tok in ["<pad>", "<eos>", "<unk>"]:
            # Note that vocab_list must not contain <pad>, <eos> and <unk>
            assert tok not in vocab_list

        # <pad> = 0, <eos> = 1, <unk> = 2
        self._vocab_list = ["<pad>", "<eos>", "<unk>"] + vocab_list
        self._vocab2idx = {v: idx for idx, v in enumerate(self._vocab_list)}

    def encode(self, s: str) -> List[int]:
        # Always strip trailing space, \r and \n
        s = s.strip("\r\n ")
        # Manually append eos to the end
        return [self.vocab_to_idx(v) for v in s] + [self.eos_idx]

    def decode(self, idxs: List[int], ignore_repeat: bool = False) -> str:
        vocabs = []
        for t, idx in enumerate(idxs):
            v = self.idx_to_vocab(idx)
            if idx == self.pad_idx or (ignore_repeat and t > 0 and idx == idxs[t - 1]):
                continue
            elif idx == self.eos_idx:
                break
            else:
                vocabs.append(v)
        return "".join(vocabs)

    @classmethod
    def load_from_file(cls, vocab_file: str = None, vocab_list: List[str] = None):
        if vocab_file is not None:
            with open(vocab_file, "r") as f:
                # Do not strip space because character based text encoder should
                # have a space token
                vocab_list = [line.strip("\r\n") for line in f]
        elif vocab_list is not None:
            pass
        else:
            raise ValueError(
                "No vocabulary information give, please specify either vocab_file or vocab_list."
            )

        return cls(vocab_list)

    @property
    def vocab_size(self) -> int:
        return len(self._vocab_list)

    @property
    def token_type(self) -> str:
        return "character"

    def vocab_to_idx(self, vocab):
        return self._vocab2idx.get(vocab, self.unk_idx)

    def idx_to_vocab(self, idx):
        return self._vocab_list[idx]


class CharacterSlotTokenizer(Tokenizer):
    """Character tokenizer with slots."""

    def __init__(self, vocab_list: List[str], slots: List[str]):
        super().__init__()

        for tok in ["<pad>", "<eos>", "<unk>"]:
            # Note that vocab_list must not contain <pad>, <eos> and <unk>
            assert tok not in vocab_list

        # <pad> = 0, <eos> = 1, <unk> = 2
        self._vocab_list = ["<pad>", "<eos>", "<unk>"] + vocab_list
        self._vocab2idx = {v: idx for idx, v in enumerate(self._vocab_list)}
        self.space_idx = self.vocab_to_idx(" ")
        self.slots = slots
        self.slot2id = {
            self.slots[i]: (i + len(self._vocab_list)) for i in range(len(self.slots))
        }
        self.id2slot = {
            (i + len(self._vocab_list)): self.slots[i] for i in range(len(self.slots))
        }

    def encode(self, sent: str, iobs: str) -> List[int]:
        # Always strip trailing space, \r and \n
        sent = sent.strip("\r\n ")
        iobs = iobs.strip("\r\n ")
        sent = re.sub(" +", " ", sent).strip(" ")
        sent = sent.split(" ")
        iobs = iobs.split(" ")
        assert len(sent) == len(
            iobs
        ), f"transcription and iobs should have same number of words (split by space)"

        if sent[0] == "BOS":
            sent = sent[1:]
            iobs = iobs[1:]

        if sent[-1] == "EOS":
            sent = sent[:-1]
            iobs = iobs[:-1]

        tokens = []
        for i, (wrd, iob) in enumerate(zip(sent, iobs)):
            if iob != "O" and (i == 0 or iobs[i - 1] != iob):
                tokens.append(self.slot2id["B-" + iob])
            tokens += [self.vocab_to_idx(v) for v in wrd]
            if iob != "O" and (i == len(sent) - 1 or iobs[i + 1] != iob):
                tokens.append(self.slot2id["E-" + iob])
            if i == (len(sent) - 1):
                tokens.append(self.eos_idx)
            else:
                if len(tokens) > 0 and tokens[-1] != self.space_idx:
                    tokens.append(self.space_idx)
        assert tokens[-1] == self.eos_idx
        return tokens

    def decode(self, idxs: List[int], ignore_repeat: bool = False) -> str:
        vocabs = []
        for t, idx in enumerate(idxs):
            v = self.idx_to_vocab(idx)
            if idx == self.pad_idx or (ignore_repeat and t > 0 and idx == idxs[t - 1]):
                continue
            elif idx == self.eos_idx:
                break
            else:
                vocabs.append(v)
        return "".join(vocabs)

    @classmethod
    def load_from_file(cls, vocab_file: str, slots_file: str):
        with open(vocab_file, "r") as f:
            # Do not strip space because character based text encoder should
            # have a space token
            vocab_list = [line.strip("\r\n") for line in f]
        org_slots = open(slots_file).read().split("\n")
        slots = []
        for slot in [slot for slot in org_slots if slot != "O"]:
            slots.append("B-" + slot)
            slots.append("E-" + slot)
        return cls(vocab_list, slots)

    @property
    def vocab_size(self) -> int:
        return len(self._vocab_list) + len(self.slots)

    @property
    def token_type(self) -> str:
        return "character-slot"

    def vocab_to_idx(self, vocab):
        return self._vocab2idx.get(vocab, self.unk_idx)

    def idx_to_vocab(self, idx):
        idx = int(idx)
        if idx < len(self._vocab_list):
            return self._vocab_list[idx]
        else:
            token = self.id2slot[idx]
            if token[0] == "B":
                return token + " "
            elif token[0] == "E":
                return " " + token
            else:
                raise ValueError("id2slot get:", token)


class SubwordTokenizer(Tokenizer):
    """Subword tokenizer using sentencepiece."""

    def __init__(self, spm):
        super().__init__()
        if spm.pad_id() != 0 or spm.eos_id() != 1 or spm.unk_id() != 2:
            raise ValueError(
                "Please train sentencepiece model with following argument:\n"
                "--pad_id=0 --eos_id=1 --unk_id=2 --bos_id=-1 --model_type=bpe --eos_piece=<eos>"
            )
        self.spm = spm

    def encode(self, s: str) -> List[int]:
        tokens = self.spm.encode_as_ids(s)
        assert tokens[-1] == self.eos_idx
        return tokens

    def decode(self, idxs: List[int], ignore_repeat: bool = False) -> str:
        crop_idx = []
        for t, idx in enumerate(idxs):
            if idx == self.eos_idx:
                break
            elif idx == self.pad_idx or (
                ignore_repeat and t > 0 and idx == idxs[t - 1]
            ):
                continue
            else:
                crop_idx.append(idx)
        return self.spm.decode_ids(crop_idx)

    @classmethod
    def load_from_file(cls, filepath: str):
        import sentencepiece as splib

        spm = splib.SentencePieceProcessor()
        spm.load(filepath)
        spm.set_encode_extra_options("eos")
        return cls(spm)

    def __setstate__(self, state):
        self.__dict__.update(state)
        self.spm.set_encode_extra_options("eos")

    @property
    def vocab_size(self) -> int:
        return len(self.spm)

    @property
    def token_type(self) -> str:
        return "subword"


class SubwordSlotTokenizer(Tokenizer):
    """Subword tokenizer with slots."""

    def __init__(self, spm, slots):
        super().__init__()
        if spm.pad_id() != 0 or spm.eos_id() != 1 or spm.unk_id() != 2:
            raise ValueError(
                "Please train sentencepiece model with following argument:\n"
                "--pad_id=0 --eos_id=1 --unk_id=2 --bos_id=-1 --model_type=bpe --eos_piece=<eos>"
            )
        self.spm = spm
        self.slots = slots
        self.slot2id = {
            self.slots[i]: (i + len(self.spm)) for i in range(len(self.slots))
        }
        self.id2slot = {
            (i + len(self.spm)): self.slots[i] for i in range(len(self.slots))
        }

    def encode(self, sent: str, iobs: str) -> List[int]:
        # Always strip trailing space, \r and \n
        sent = sent.strip("\r\n ")
        iobs = iobs.strip("\r\n ")
        sent = re.sub(" +", " ", sent).strip(" ")
        sent = sent.split(" ")
        iobs = iobs.split(" ")
        assert len(sent) == len(
            iobs
        ), f"transcription and iobs should have same number of words (split by space)"

        if sent[0] == "BOS":
            sent = sent[1:]
            iobs = iobs[1:]

        if sent[-1] == "EOS":
            sent = sent[:-1]
            iobs = iobs[:-1]

        tokens = []
        for i, (wrd, iob) in enumerate(zip(sent, iobs)):
            if iob != "O" and (i == 0 or iobs[i - 1] != iob):
                tokens.append(self.slot2id["B-" + iob])
            encoded = self.spm.encode_as_ids(wrd)
            assert encoded[-1] == self.eos_idx
            tokens += encoded[:-1]  # drop eos
            if iob != "O" and (i == len(sent) - 1 or iobs[i + 1] != iob):
                tokens.append(self.slot2id["E-" + iob])
        assert tokens[-1] != self.eos_idx
        tokens.append(self.eos_idx)
        return tokens

    def decode(self, idxs: List[int], ignore_repeat: bool = False) -> str:
        crop_idx = []
        for t, idx in enumerate(idxs):
            if idx == self.eos_idx:
                break
            elif idx == self.pad_idx or (
                ignore_repeat and t > 0 and idx == idxs[t - 1]
            ):
                continue
            else:
                crop_idx.append(idx)

        sent, ret = [], []
        for i, x in enumerate(crop_idx):
            if x >= len(self.spm):  # x is slot token
                slot = self.id2slot[x]
                ret.append(slot)
                if len(sent) > 0:
                    decoded = self.spm.decode_ids(sent)
                    ret.insert(-1, decoded)
                    sent = []
            else:  # x is a regular token interpretable by spm
                sent.append(x)
        return " ".join(ret)

    @classmethod
    def load_from_file(cls, filepath: str, slots_file: str):
        import sentencepiece as splib

        spm = splib.SentencePieceProcessor()
        spm.load(filepath)
        spm.set_encode_extra_options(":eos")
        org_slots = open(slots_file).read().split("\n")
        slots = []
        for slot in [slot for slot in org_slots if slot != "O"]:
            slots.append("B-" + slot)
            slots.append("E-" + slot)
        return cls(spm, slots)

    def __setstate__(self, state):
        self.__dict__.update(state)
        self.spm.set_encode_extra_options("eos")

    @property
    def vocab_size(self) -> int:
        return len(self.spm) + len(self.slots)

    @property
    def token_type(self) -> str:
        return "subword-slot"


class WordTokenizer(CharacterTokenizer):
    """Word tokenizer."""

    def encode(self, s: str) -> List[int]:
        # Always strip trailing space, \r and \n
        s = s.strip("\r\n ")
        # Space as the delimiter between words
        words = s.split(" ")
        # Manually append eos to the end
        return [self.vocab_to_idx(v) for v in words] + [self.eos_idx]

    def decode(self, idxs: List[int], ignore_repeat: bool = False) -> str:
        vocabs = []
        for t, idx in enumerate(idxs):
            v = self.idx_to_vocab(idx)
            if idx == self.eos_idx:
                break
            elif idx == self.pad_idx or (
                ignore_repeat and t > 0 and idx == idxs[t - 1]
            ):
                continue
            else:
                vocabs.append(v)
        return " ".join(vocabs)

    @property
    def token_type(self) -> str:
        return "word"


class PhonemeTokenizer(WordTokenizer):
    """Phoneme tokenizer."""

    @property
    def token_type(self) -> str:
        return "phoneme"


class BertTokenizer(Tokenizer):
    """Bert Tokenizer.

    https://github.com/huggingface/pytorch-transformers/blob/master/pytorch_transformers/tokenization_bert.py
    """

    def __init__(self, tokenizer):
        super().__init__()
        self._tokenizer = tokenizer
        self._tokenizer.pad_token = "<pad>"
        self._tokenizer.eos_token = "<eos>"
        self._tokenizer.unk_token = "<unk>"

    def encode(self, s: str) -> List[int]:
        # Reduce vocab size manually
        reduced_idx = []
        for idx in self._tokenizer.encode(s):
            try:
                r_idx = idx - BERT_FIRST_IDX
                assert r_idx > 0
                reduced_idx.append(r_idx)
            except AssertionError:
                reduced_idx.append(self.unk_idx)
        reduced_idx.append(self.eos_idx)
        return reduced_idx

    def decode(self, idxs: List[int], ignore_repeat: bool = False) -> str:
        crop_idx = []
        for t, idx in enumerate(idxs):
            if idx == self.eos_idx:
                break
            elif idx == self.pad_idx or (
                ignore_repeat and t > 0 and idx == idxs[t - 1]
            ):
                continue
            else:
                # Shift to correct idx for bert tokenizer
                crop_idx.append(idx + BERT_FIRST_IDX)
        return self._tokenizer.decode(crop_idx)

    @classmethod
    def load_from_file(cls, vocab_file: str):
        from pytorch_transformers import BertTokenizer as bert_tokenizer

        return cls(bert_tokenizer.from_pretrained(vocab_file))

    @property
    def vocab_size(self) -> int:
        return BERT_LAST_IDX - BERT_FIRST_IDX + 1

    @property
    def token_type(self) -> str:
        return "bert"


def load_tokenizer(
    mode: str,
    vocab_file: str = None,
    vocab_list: List[str] = None,
    slots_file: str = None,
) -> Tokenizer:
    """Load a text tokenizer.

    Args:
        mode (str): Mode ("character", "character-slot", "subword", "subword-slot", "word", "bert-...")
        vocab_file (str, optional): Path to vocabularies. Defaults to None.
        vocab_list (List[str], optional): List of vocabularies. Defaults to None.
        slots_file (str, optional): Path to slots. Defaults to None.

    Raises:
        NotImplementedError: If mode is not implemented.

    Returns:
        Tokenizer: Text tokenizer.
    """
    assert (
        int(vocab_file is not None) + int(vocab_list is not None) <= 1
    ), "For 'vocab_file' and 'vocab_list', at most one argument can be presented"

    with tempfile.NamedTemporaryFile("w") as f:
        if vocab_list is not None:
            f.writelines([f"{vocab}\n" for vocab in vocab_list])
            f.flush()
            vocab_file = f.name

        if slots_file is not None and not mode.endswith("slot"):
            mode = f"{mode}-slot"

        if mode == "character":
            return CharacterTokenizer.load_from_file(vocab_file)
        elif mode == "character-slot":
            return CharacterSlotTokenizer.load_from_file(vocab_file, slots_file)
        elif mode == "subword":
            return SubwordTokenizer.load_from_file(vocab_file)
        elif mode == "subword-slot":
            return SubwordSlotTokenizer.load_from_file(vocab_file, slots_file)
        elif mode == "word":
            return WordTokenizer.load_from_file(vocab_file)
        elif mode == "phoneme":
            return PhonemeTokenizer.load_from_file(vocab_file)
        elif mode.startswith("bert-"):
            return BertTokenizer.load_from_file(mode)
        else:
            raise NotImplementedError("`{}` is not yet supported.".format(mode))


def default_phoneme_tokenizer() -> PhonemeTokenizer:
    """Returns a default LibriSpeech phoneme tokenizer.

    Returns:
        PhonemeTokenizer: Vocabs include 71 phonemes
    """

    return PhonemeTokenizer.load_from_file(vocab_list=PHONEME_VOCAB)