File size: 12,888 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import logging
import os
import random
from dataclasses import dataclass
from typing import Callable, List

import torch
import torchaudio

from s3prl.dataio.encoder.category import CategoryEncoder
from s3prl.dataio.encoder.g2p import G2P
from s3prl.dataio.encoder.tokenizer import (
    Tokenizer,
    default_phoneme_tokenizer,
    load_tokenizer,
)
from s3prl.dataio.encoder.vocabulary import generate_vocab

from .base import AugmentedDynamicItemDataset, DataPipe

logger = logging.getLogger(__name__)


class SetOutputKeys(DataPipe):
    def __init__(self, output_keys: dict = None) -> None:
        super().__init__()
        self.output_keys = output_keys

    def forward(self, dataset: AugmentedDynamicItemDataset):
        dataset.update_output_keys(self.output_keys)
        return dataset


@dataclass
class LoadAudio(DataPipe):
    audio_sample_rate: int = 16000
    audio_channel_reduction: str = "first"
    sox_effects: list = None

    wav_path_name: str = "wav_path"
    wav_name: str = "wav"
    start_sec_name: str = "start_sec"
    end_sec_name: str = "end_sec"

    def load_audio(
        self,
        wav_path,
        start_sec: float = None,
        end_sec: float = None,
    ):
        crop_segment = start_sec is not None and end_sec is not None

        torchaudio.set_audio_backend("sox_io")
        wav, sr = torchaudio.load(
            wav_path,
            frame_offset=round(start_sec * self.audio_sample_rate)
            if crop_segment
            else 0,
            num_frames=round((end_sec - start_sec) * self.audio_sample_rate)
            if crop_segment
            else -1,
        )

        if self.sox_effects is not None:
            wav, sr = torchaudio.sox_effects.apply_effects_tensor(
                wav, sr, effects=self.sox_effects
            )

        if sr != self.audio_sample_rate:
            resampler = torchaudio.transforms.Resample(sr, self.audio_sample_rate)
            wav = resampler(wav)

        if self.audio_channel_reduction == "first":
            wav = wav[0]
        elif self.audio_channel_reduction == "mean":
            wav = wav.mean(dim=0)

        wav = wav.view(-1, 1)
        return wav

    def compute_length(self, wav):
        return len(wav)

    def forward(self, dataset: AugmentedDynamicItemDataset):
        item = dataset[0]
        if self.start_sec_name in item and self.end_sec_name in item:
            crop_segment = True
        else:
            crop_segment = False

        if not crop_segment:
            dataset.add_dynamic_item(
                self.load_audio, takes=self.wav_path_name, provides=self.wav_name
            )
        else:
            dataset.add_dynamic_item(
                self.load_audio,
                takes=[self.wav_path_name, self.start_sec_name, self.end_sec_name],
                provides=self.wav_name,
            )
        dataset.add_dynamic_item(
            self.compute_length,
            takes=self.wav_name,
            provides=f"{self.wav_name}_len",
        )
        return dataset


@dataclass
class EncodeCategory(DataPipe):
    train_category_encoder: bool = False
    label_name: str = "label"
    category_encoder_name: str = "category"
    encoded_target_name: str = "class_id"

    def prepare_category(self, labels):
        return CategoryEncoder(sorted(list(set(labels))))

    def encode_label(self, category, label):
        return category.encode(label)

    def forward(self, dataset: AugmentedDynamicItemDataset):
        if self.train_category_encoder:
            with dataset.output_keys_as([self.label_name]):
                labels = [item[self.label_name] for item in dataset]
            category = self.prepare_category(labels)
            dataset.add_tool(self.category_encoder_name, category)

        category = dataset.get_tool(self.category_encoder_name)
        dataset.add_tool("output_size", len(category))

        dataset.add_dynamic_item(
            self.encode_label,
            takes=[self.category_encoder_name, self.label_name],
            provides=self.encoded_target_name,
        )
        return dataset


@dataclass
class EncodeMultipleCategory(EncodeCategory):
    train_category_encoder: bool = False
    label_name: str = "labels"
    category_encoder_name: str = "categories"
    encoded_target_name: str = "class_ids"

    def encode_label(self, categories, labels):
        return torch.LongTensor(
            [category.encode(label) for category, label in zip(categories, labels)]
        )

    def forward(self, dataset: AugmentedDynamicItemDataset):
        if self.train_category_encoder:
            with dataset.output_keys_as([self.label_name]):
                labels = [item[self.label_name] for item in dataset]
            label_types = list(zip(*labels))
            categories = [
                self.prepare_category(label_type) for label_type in label_types
            ]
            dataset.add_tool(self.category_encoder_name, categories)
            dataset.add_tool("output_size", sum([len(c) for c in categories]))

        dataset.add_dynamic_item(
            self.encode_label,
            takes=[self.category_encoder_name, self.label_name],
            provides=self.encoded_target_name,
        )
        return dataset


@dataclass
class EncodeMultiLabel(DataPipe):
    label_name: str = "labels"
    category_encoder_name: str = "category"
    encoded_target_name: str = "binary_labels"

    @staticmethod
    def label_to_binary_vector(label: List, num_labels: int) -> torch.Tensor:
        # Lame special case for multilabel with no labels
        if len(label) == 0:
            # BCEWithLogitsLoss wants float not long targets
            binary_labels = torch.zeros((num_labels,), dtype=torch.float)
        else:
            binary_labels = torch.zeros((num_labels,)).scatter(
                0, torch.tensor(label), 1.0
            )

        # Validate the binary vector we just created
        assert set(torch.where(binary_labels == 1.0)[0].numpy()) == set(label)
        return binary_labels

    def encode_label(self, category, labels):
        labels = [category.encode(label) for label in labels]
        binary_labels = self.label_to_binary_vector(labels, len(category))
        return binary_labels

    def forward(self, dataset: AugmentedDynamicItemDataset):
        if not dataset.has_tool(self.category_encoder_name):
            with dataset.output_keys_as([self.label_name]):
                all_labels = []
                for item in dataset:
                    all_labels.extend(item[self.label_name])
                all_labels.sort()
                all_labels = set(all_labels)
                category = CategoryEncoder(all_labels)
                dataset.add_tool(self.category_encoder_name, category)

        category = dataset.get_tool(self.category_encoder_name)
        dataset.add_tool("output_size", len(category))

        dataset.add_dynamic_item(
            self.encode_label,
            takes=[self.category_encoder_name, self.label_name],
            provides=self.encoded_target_name,
        )
        return dataset


@dataclass
class GenerateTokenizer(DataPipe):
    generate: bool = True
    tokenizer_name: str = "tokenizer"
    text_name: str = "transcription"
    vocab_type: str = "character"
    text_file: str = None
    vocab_file: str = None
    slots_file: str = None
    vocab_args: dict = None

    def prepare_tokenizer(self, text_list: str = None) -> Tokenizer:
        """Generates tokenizer from text data.

        Args:
            text_list (str, optional): List of text. Defaults to None.

        Returns:
            Tokenizer: Generated tokenizer
        """

        vocab_args = self.vocab_args or {}
        assert isinstance(vocab_args, dict)

        if text_list is not None:
            vocab_result = generate_vocab(
                self.vocab_type, text_list=text_list, **vocab_args
            )
        else:
            vocab_result = generate_vocab(
                self.vocab_type, text_file=self.text_file, **vocab_args
            )
        vocab_list = vocab_result if isinstance(vocab_result, list) else None
        vocab_file = vocab_result if isinstance(vocab_result, str) else None

        tokenizer = load_tokenizer(
            self.vocab_type,
            vocab_file=vocab_file,
            vocab_list=vocab_list,
            slots_file=self.slots_file,
        )
        return tokenizer

    def forward(self, dataset: AugmentedDynamicItemDataset):
        try:
            tokenizer = dataset.get_tool(self.tokenizer_name)
            logger.info(
                f"Tokenizer (name = {self.tokenizer_name}) exists in dataset, skip generation."
            )
        except KeyError:
            if self.generate:
                if self.vocab_file is not None and os.path.exists(self.vocab_file):
                    tokenizer = load_tokenizer(
                        self.vocab_type,
                        vocab_file=self.vocab_file,
                        slots_file=self.slots_file,
                    )
                else:
                    text_list = None
                    if self.text_file is None:
                        with dataset.output_keys_as([self.text_name]):
                            text_list = [item[self.text_name] for item in dataset]

                    tokenizer = self.prepare_tokenizer(text_list)

                dataset.add_tool(self.tokenizer_name, tokenizer)
            else:
                logger.warning(
                    "No tokenizer is found or generated. No-op for this DataPipe"
                )

        return dataset


@dataclass
class EncodeText(DataPipe):
    text_name: str = "transcription"
    output_text_name: str = "tokenized_text"
    tokenizer_name: str = "tokenizer"

    def encode_text(self, tokenizer: Tokenizer, text: str) -> torch.LongTensor:
        return torch.LongTensor(tokenizer.encode(text))

    def forward(self, dataset: AugmentedDynamicItemDataset):
        try:
            tokenizer = dataset.get_tool(self.tokenizer_name)
        except KeyError:
            raise KeyError(f"Tokenizer (name = {self.tokenizer_name}) not found!")

        dataset.add_dynamic_item(
            self.encode_text,
            takes=[self.tokenizer_name, self.text_name],
            provides=self.output_text_name,
        )
        dataset.add_tool("output_size", tokenizer.vocab_size)

        return dataset


@dataclass
class Phonemize(DataPipe):
    text_name: str = "transcription"
    phonemized_text_name: str = "phonemized_text"
    output_text_name: str = "tokenized_text"
    g2p_name: str = "g2p"
    tokenizer_name: str = "tokenizer"

    def grapheme2phoneme(self, g2p: G2P, text: str) -> str:
        return g2p.encode(text)

    def encode_text(self, tokenizer: Tokenizer, text: str) -> torch.LongTensor:
        return torch.LongTensor(tokenizer.encode(text))

    def forward(self, dataset: AugmentedDynamicItemDataset):
        if not dataset.has_tool(self.g2p_name):
            logger.warning(
                f"Cannot find {self.g2p_name} in dataset, use default G2P instead."
            )
            dataset.add_tool(self.g2p_name, G2P())

        if not dataset.has_tool(self.tokenizer_name):
            logger.warning(
                f"Cannot find {self.tokenizer_name} in dataset, use default tokenizer instead."
            )
            dataset.add_tool(self.tokenizer_name, default_phoneme_tokenizer())

        dataset.add_dynamic_item(
            self.grapheme2phoneme,
            takes=[self.g2p_name, self.text_name],
            provides=self.phonemized_text_name,
        )

        dataset.add_dynamic_item(
            self.encode_text,
            takes=[self.tokenizer_name, self.phonemized_text_name],
            provides=self.output_text_name,
        )

        tokenizer = dataset.get_tool(self.tokenizer_name)
        dataset.add_tool("output_size", tokenizer.vocab_size)

        return dataset


@dataclass
class RandomCrop(DataPipe):
    """
    Completely randomized for every batch even with the same datapoint id.
    Only suitable for training.
    """

    sample_rate: int = 16000
    max_secs: float = None

    wav_name: str = "wav"
    crop_name: str = "wav_crop"

    def crop_wav(self, wav):
        if self.max_secs is not None and wav.size(0) > self.max_secs * self.sample_rate:
            start = random.randint(0, wav.size(0) - self.max_secs * self.sample_rate)
            end = start + self.max_secs * self.sample_rate
            wav = wav[round(start) : round(end)]
        return wav, wav.size(0)

    def forward(
        self, dataset: AugmentedDynamicItemDataset
    ) -> AugmentedDynamicItemDataset:
        dataset.add_dynamic_item(
            self.crop_wav,
            takes=[self.wav_name],
            provides=[self.crop_name, f"{self.crop_name}_len"],
        )
        return dataset