File size: 21,777 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import os
import sys
import math
import glob
import uuid
import shutil
import random
import tempfile
import importlib
from pathlib import Path

import torch
import torchaudio
import numpy as np
from tqdm import tqdm
from tensorboardX import SummaryWriter
from torch.utils.data import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import is_initialized, get_rank, get_world_size

from s3prl import hub
from s3prl.optimizers import get_optimizer
from s3prl.schedulers import get_scheduler
from s3prl.upstream.interfaces import Featurizer
from s3prl.utility.helper import is_leader_process, get_model_state, show, defaultdict

from huggingface_hub import HfApi, HfFolder, Repository

SAMPLE_RATE = 16000

MODEL_CARD_MARKDOWN = """---
datasets:
- superb
tags:
- library:s3prl
- benchmark:superb
- type:model
---

# Fine-tuned s3prl model

Upstream Model: {upstream_model}

## Model description

[More information needed]

## Intended uses & limitations

[More information needed]

## How to use

[More information needed]

## Limitations and bias

[More information needed]

## Training data

[More information needed]

## Training procedure

[More information needed]

## Evaluation results

[More information needed]

"""


class ModelEntry:
    def __init__(self, model, name, trainable, interfaces):
        self.model = model
        self.name = name
        self.trainable = trainable
        self.interfaces = interfaces


class Runner():
    """
    Used to handle high-level concepts of a ML experiment
    eg. training loop, evaluation loop, upstream propagation, optimization, logging, checkpoint saving
    """
    def __init__(self, args, config):
        self.args = args
        self.config = config
        self.init_ckpt = torch.load(self.args.init_ckpt, map_location='cpu') if self.args.init_ckpt else {}

        self.upstream = self._get_upstream()
        self.featurizer = self._get_featurizer()
        self.downstream = self._get_downstream()
        self.all_entries = [self.upstream, self.featurizer, self.downstream]


    def _load_weight(self, model, name):
        init_weight = self.init_ckpt.get(name)
        if init_weight:
            show(f'[Runner] - Loading {name} weights from the previous experiment')
            model.load_state_dict(init_weight)


    def _init_model(self, model, name, trainable, interfaces=None):
        for interface in interfaces or []:
            assert hasattr(model, interface), interface

        self._load_weight(model, name)

        if is_initialized() and trainable and any((p.requires_grad for p in model.parameters())):
            model = DDP(model, device_ids=[self.args.local_rank], find_unused_parameters=True)
            for interface in interfaces or []:
                setattr(model, interface, getattr(model.module, interface))

        return ModelEntry(model, name, trainable, interfaces)


    def _get_upstream(self):
        if "from_hf_hub" in self.args and self.args.from_hf_hub == True:
            from huggingface_hub import snapshot_download

            print(f'[Runner] - Downloading upstream model {self.args.upstream} from the Hugging Face Hub')
            filepath = snapshot_download(self.args.upstream, self.args.upstream_revision, use_auth_token=True)
            sys.path.append(filepath)

            dependencies = (Path(filepath) / 'requirements.txt').resolve()
            print("[Dependency] - The downloaded upstream model requires the following dependencies. Please make sure they are installed:")
            for idx, line in enumerate((Path(filepath) / "requirements.txt").open().readlines()):
                print(f"{idx}. {line.strip()}")
            print(f"You can install them by:")
            print()
            print(f"pip install -r {dependencies}")
            print()

            from expert import UpstreamExpert
            Upstream = UpstreamExpert
            ckpt_path = os.path.join(filepath, self.args.upstream_model_name)
        else:
            Upstream = getattr(hub, self.args.upstream)
            ckpt_path = self.args.upstream_ckpt
        upstream_refresh = self.args.upstream_refresh

        if is_initialized() and get_rank() > 0:
            torch.distributed.barrier()
            upstream_refresh = False

        model = Upstream(
            ckpt = ckpt_path,
            model_config = self.args.upstream_model_config,
            refresh = upstream_refresh,
        ).to(self.args.device)

        if is_initialized() and get_rank() == 0:
            torch.distributed.barrier()

        return self._init_model(
            model = model,
            name = 'Upstream',
            trainable = self.args.upstream_trainable,
            interfaces = ["get_downsample_rates"]
        )


    def _get_featurizer(self):
        model = Featurizer(
            upstream = self.upstream.model,
            feature_selection = self.args.upstream_feature_selection,
            layer_selection = self.args.upstream_layer_selection,
            upstream_device = self.args.device,
            normalize = self.args.upstream_feature_normalize,
        ).to(self.args.device)

        return self._init_model(
            model = model,
            name = 'Featurizer',
            trainable = True,
            interfaces = ['output_dim', 'downsample_rate']
        )


    def _get_downstream(self):
        expert = importlib.import_module(f"s3prl.downstream.{self.args.downstream}.expert")
        Downstream = getattr(expert, "DownstreamExpert")

        model = Downstream(
            upstream_dim = self.featurizer.model.output_dim,
            upstream_rate = self.featurizer.model.downsample_rate,
            **self.config,
            **vars(self.args)
        ).to(self.args.device)

        return self._init_model(
            model = model,
            name = 'Downstream',
            trainable = True,
            interfaces = ['get_dataloader', 'log_records']
        )


    def _get_optimizer(self, model_params):
        optimizer = get_optimizer(
            model_params, 
            self.config['runner']['total_steps'],
            self.config['optimizer']
        )
        self._load_weight(optimizer, 'Optimizer')
        return optimizer


    def _get_scheduler(self, optimizer):
        scheduler = get_scheduler(
            optimizer,
            self.config['runner']['total_steps'],
            self.config['scheduler']
        )
        self._load_weight(scheduler, 'Scheduler')
        return scheduler

    def _create_model_card(self, path):
        model_card = MODEL_CARD_MARKDOWN.format(upstream_model=self.args.upstream)
        with open(os.path.join(path, "README.md"), "w") as f:
            f.write(model_card)


    def train(self):
        # trainable parameters and train/eval mode
        trainable_models = []
        trainable_paras = []
        for entry in self.all_entries:
            if entry.trainable:
                entry.model.train().to(self.args.device)
                trainable_models.append(entry.model)
                trainable_paras += list(entry.model.parameters())
            else:
                entry.model.eval()

        # set amp
        amp = self.config['runner'].get('fp16', False)
        if amp:
            print('[Runner] - Enabled fp16 training')
            scaler = torch.cuda.amp.GradScaler()

        # optimizer
        optimizer = self._get_optimizer(trainable_models)

        # scheduler
        scheduler = None
        if self.config.get('scheduler'):
            scheduler = self._get_scheduler(optimizer)

        # specaug
        specaug = None
        if self.config.get('specaug'):
            from .specaug import SpecAug
            specaug = SpecAug(**self.config["specaug"])

        # progress bar
        tqdm_file = sys.stderr if is_leader_process() else open(os.devnull, 'w')
        pbar = tqdm(total=self.config['runner']['total_steps'], dynamic_ncols=True, desc='overall', file=tqdm_file)
        init_step = self.init_ckpt.get('Step')
        if init_step:
            pbar.n = init_step

        # Tensorboard logging
        if is_leader_process():
            logger = SummaryWriter(self.args.expdir)

        batch_ids = []
        backward_steps = 0
        records = defaultdict(list)
        epoch = self.init_ckpt.get('Epoch', 0)
        train_split = self.config['runner'].get("train_dataloader", "train")
        while pbar.n < pbar.total:
            try:
                dataloader = self.downstream.model.get_dataloader(train_split, epoch=epoch)
            except TypeError as e:
                if "unexpected keyword argument 'epoch'" in str(e):
                    dataloader = self.downstream.model.get_dataloader(train_split)
                    if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, DistributedSampler):
                        dataloader.sampler.set_epoch(epoch)
                else:
                    raise

            for batch_id, (wavs, *others) in enumerate(tqdm(dataloader, dynamic_ncols=True, desc='train', file=tqdm_file)):
                # try/except block for forward/backward
                try:
                    if pbar.n >= pbar.total:
                        break
                    global_step = pbar.n + 1

                    wavs = [torch.FloatTensor(wav).to(self.args.device) for wav in wavs]

                    with torch.cuda.amp.autocast(enabled=amp):
                        if self.upstream.trainable:
                            features = self.upstream.model(wavs)
                        else:
                            with torch.no_grad():
                                features = self.upstream.model(wavs)
                        features = self.featurizer.model(wavs, features)

                        if specaug:
                            features, _ = specaug(features)

                        loss = self.downstream.model(
                            train_split,
                            features, *others,
                            records = records,
                        )
                    batch_ids.append(batch_id)

                    gradient_accumulate_steps = self.config['runner'].get('gradient_accumulate_steps')
                    loss = (loss / gradient_accumulate_steps)
                    if amp:
                        scaler.scale(loss).backward()
                    else:
                        loss.backward()
                    del loss

                except RuntimeError as e:
                    if 'CUDA out of memory' in str(e):
                        print(f'[Runner] - CUDA out of memory at step {global_step}')
                        if is_initialized():
                            raise
                        with torch.cuda.device(self.args.device):
                            torch.cuda.empty_cache()
                        optimizer.zero_grad()
                        continue
                    else:
                        raise

                # whether to accumulate gradient
                backward_steps += 1
                if backward_steps % gradient_accumulate_steps > 0:
                    continue

                # unscale
                if amp:
                    scaler.unscale_(optimizer)

                # gradient clipping
                grad_norm = torch.nn.utils.clip_grad_norm_(
                    trainable_paras, self.config['runner']['gradient_clipping'])

                # optimize
                if amp:
                    scaler.step(optimizer)
                    scaler.update()
                elif math.isnan(grad_norm):
                    print(f'[Runner] - grad norm is NaN at step {global_step}')
                else:
                    optimizer.step()
                optimizer.zero_grad()

                # adjust learning rate
                if scheduler:
                    scheduler.step()

                if not is_leader_process():
                    batch_ids = []
                    records = defaultdict(list)
                    continue

                # logging
                if global_step % self.config['runner']['log_step'] == 0:
                    self.downstream.model.log_records(
                        train_split,
                        records = records,
                        logger = logger,
                        global_step = global_step,
                        batch_ids = batch_ids,
                        total_batch_num = len(dataloader),
                    )
                    batch_ids = []
                    records = defaultdict(list)

                # evaluation and save checkpoint
                save_names = []

                if global_step % self.config['runner']['eval_step'] == 0:
                    for split in self.config['runner']['eval_dataloaders']:
                        save_names += self.evaluate(split, logger, global_step)

                if global_step % self.config['runner']['save_step'] == 0:
                    def check_ckpt_num(directory):
                        max_keep = self.config['runner']['max_keep']
                        ckpt_pths = glob.glob(f'{directory}/states-*.ckpt')
                        if len(ckpt_pths) >= max_keep:
                            ckpt_pths = sorted(ckpt_pths, key=lambda pth: int(pth.split('-')[-1].split('.')[0]))
                            for ckpt_pth in ckpt_pths[:len(ckpt_pths) - max_keep + 1]:
                                os.remove(ckpt_pth)
                    check_ckpt_num(self.args.expdir)
                    save_names.append(f'states-{global_step}.ckpt')

                if len(save_names) > 0:
                    all_states = {
                        'Optimizer': optimizer.state_dict(),
                        'Step': global_step,
                        'Epoch': epoch,
                        'Args': self.args,
                        'Config': self.config,
                    }

                    for entry in self.all_entries:
                        if entry.trainable:
                            all_states[entry.name] = get_model_state(entry.model)

                    if scheduler:
                        all_states['Scheduler'] = scheduler.state_dict()

                    if is_initialized():
                        all_states['WorldSize'] = get_world_size()

                    save_paths = [os.path.join(self.args.expdir, name) for name in save_names]
                    tqdm.write(f'[Runner] - Save the checkpoint to:')
                    for i, path in enumerate(save_paths):
                        tqdm.write(f'{i + 1}. {path}')
                        torch.save(all_states, path)

                pbar.update(1)
            epoch += 1

        pbar.close()

        if self.args.push_to_hf_hub:
            self.push_to_huggingface_hub()
        if is_leader_process():
            logger.close()


    def evaluate(self, split=None, logger=None, global_step=0):
        """evaluate function will always be called on a single process even during distributed training"""

        # When this member function is called directly by command line
        not_during_training = split is None and logger is None and global_step == 0
        if not_during_training:
            split = self.args.evaluate_split
            tempdir = tempfile.mkdtemp()
            logger = SummaryWriter(tempdir)

        # fix seed to guarantee the same evaluation protocol across steps 
        random.seed(self.args.seed)
        np.random.seed(self.args.seed)
        torch.manual_seed(self.args.seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(self.args.seed)
            with torch.cuda.device(self.args.device):
                torch.cuda.empty_cache()

        # record original train/eval states and set all models to eval
        trainings = []
        for entry in self.all_entries:
            trainings.append(entry.model.training)
            entry.model.eval()

        # prepare data
        dataloader = self.downstream.model.get_dataloader(split)
        evaluate_ratio = float(self.config["runner"].get("evaluate_ratio", 1))
        evaluate_steps = round(len(dataloader) * evaluate_ratio)

        batch_ids = []
        records = defaultdict(list)
        for batch_id, (wavs, *others) in enumerate(tqdm(dataloader, dynamic_ncols=True, desc=split, total=evaluate_steps)):
            if batch_id > evaluate_steps:
                break

            wavs = [torch.FloatTensor(wav).to(self.args.device) for wav in wavs]
            with torch.no_grad():
                features = self.upstream.model(wavs)
                features = self.featurizer.model(wavs, features)
                self.downstream.model(
                    split,
                    features, *others,
                    records = records,
                    batch_id = batch_id,
                )
                batch_ids.append(batch_id)

        save_names = self.downstream.model.log_records(
            split,
            records = records,
            logger = logger,
            global_step = global_step,
            batch_ids = batch_ids,
            total_batch_num = len(dataloader),
        )
        batch_ids = []
        records = defaultdict(list)

        # prepare back to training
        if torch.cuda.is_available():
            with torch.cuda.device(self.args.device):
                torch.cuda.empty_cache()

        for entry, training in zip(self.all_entries, trainings):
            if training:
                entry.model.train().to(self.args.device)

        if not_during_training:
            logger.close()
            shutil.rmtree(tempdir)

        return [] if type(save_names) is not list else save_names

    def inference(self):
        filepath = Path(self.args.evaluate_split)
        assert filepath.is_file(), filepath
        filename = filepath.stem

        if hasattr(self.downstream.model, "load_audio"):
            wav = self.downstream.model.load_audio(filepath)
        else:
            wav, sr = torchaudio.load(str(filepath))
            assert sr == SAMPLE_RATE, sr
        wavs = [wav.view(-1).to(self.args.device)]

        for entry in self.all_entries:
            entry.model.eval()

        with torch.no_grad():
            features = self.upstream.model(wavs)
            features = self.featurizer.model(wavs, features)
            self.downstream.model.inference(features, [filename])

    def push_to_huggingface_hub(self):
        """Creates a downstream repository on the Hub and pushes training artifacts to it."""
        if self.args.hf_hub_org.lower() != "none":
            organization = self.args.hf_hub_org
        else:
            organization = os.environ.get("HF_USERNAME")
        huggingface_token = HfFolder.get_token()
        print(f"[Runner] - Organisation to push fine-tuned model to: {organization}")
        
        # Extract upstream repository metadata
        if self.args.hub == "huggingface":
            model_info = HfApi().model_info(self.args.upstream, token=huggingface_token)
            downstream_model_id = model_info.sha
            # Exclude "/" characters from downstream repo ID
            upstream_model_id = model_info.modelId.replace("/", "__")
        else:
            upstream_model_id = self.args.upstream.replace("/", "__")
            downstream_model_id = str(uuid.uuid4())[:8]
        repo_name = f"{upstream_model_id}__{downstream_model_id}"
        # Create downstream repo on the Hub
        repo_url = HfApi().create_repo(
            token=huggingface_token,
            name=repo_name,
            organization=organization,
            exist_ok=True,
            private=False,
        )
        print(f"[Runner] - Created Hub repo: {repo_url}")

        # Download repo
        HF_HUB_DIR = "hf_hub"
        REPO_ROOT_DIR = os.path.join(self.args.expdir, HF_HUB_DIR, repo_name)
        REPO_TASK_DIR = os.path.join(REPO_ROOT_DIR, self.args.downstream, self.args.expname)
        print(f"[Runner] - Cloning Hub repo to {REPO_ROOT_DIR}")
        model_repo = Repository(
            local_dir=REPO_ROOT_DIR, clone_from=repo_url, use_auth_token=huggingface_token
        )
        # Pull latest changes if they exist
        model_repo.git_pull()

        # Copy checkpoints, tensorboard logs, and args / configs
        # Note that this copies all files from the experiment directory,
        # including those from multiple runs
        shutil.copytree(self.args.expdir, REPO_TASK_DIR, dirs_exist_ok=True, ignore=shutil.ignore_patterns(HF_HUB_DIR))

        # By default we use model.ckpt in the PreTrainedModel interface, so
        # rename the best checkpoint to match this convention
        checkpoints = list(Path(REPO_TASK_DIR).glob("*best*.ckpt"))
        if len(checkpoints) == 0:
            print("[Runner] - Did not find a best checkpoint! Using the final checkpoint instead ...")
            CKPT_PATH = (
                os.path.join(REPO_TASK_DIR, f"states-{self.config['runner']['total_steps']}.ckpt")
                )
        elif len(checkpoints) > 1:
            print(f"[Runner] - More than one best checkpoint found! Using {checkpoints[0]} as default ...")
            CKPT_PATH = checkpoints[0]
        else:
            print(f"[Runner] - Found best checkpoint {checkpoints[0]}!")
            CKPT_PATH = checkpoints[0]
        shutil.move(CKPT_PATH, os.path.join(REPO_TASK_DIR, "model.ckpt"))
        model_repo.lfs_track("*.ckpt")

        # Write model card
        self._create_model_card(REPO_ROOT_DIR)

        # Push everything to the Hub
        print("[Runner] - Pushing model files to the Hub ...")
        model_repo.push_to_hub()
        print("[Runner] - Training run complete!")