File size: 6,862 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
The beam search decoder of flashlight

Authors:
  * Heng-Jui Chang 2022
"""

import itertools as it
import logging
import math
from typing import Iterable, List

import torch

from s3prl.util.download import _urls_to_filepaths

TOKEN_URL = "https://huggingface.co/datasets/s3prl/flashlight/raw/main/lexicon/librispeech_char_tokens.txt"

LEXICON_URL_1 = "https://dl.fbaipublicfiles.com/fairseq/wav2vec/librispeech_lexicon.lst"
LEXICON_URL_2 = "https://huggingface.co/datasets/s3prl/flashlight/raw/main/lexicon/librispeech_lexicon.lst"

LM_URL_1 = "https://www.openslr.org/resources/11/4-gram.arpa.gz"
LM_URL_2 = (
    "https://huggingface.co/datasets/s3prl/flashlight/resolve/main/lm/4-gram.arpa.gz"
)

logger = logging.getLogger(__name__)

__all__ = ["BeamDecoder"]


class BeamDecoder(object):
    """Beam decoder powered by flashlight.

    Args:
        token (str, optional): Path to dictionary file. Defaults to "".
        lexicon (str, optional): Path to lexicon file. Defaults to "".
        lm (str, optional): Path to KenLM file. Defaults to "".
        nbest (int, optional): Returns nbest hypotheses. Defaults to 1.
        beam (int, optional): Beam size. Defaults to 5.
        beam_size_token (int, optional): Token beam size. Defaults to -1.
        beam_threshold (float, optional): Beam search log prob threshold. Defaults to 25.0.
        lm_weight (float, optional): language model weight. Defaults to 2.0.
        word_score (float, optional): score for words appearance in the transcription. Defaults to -1.0.
        unk_score (float, optional): score for unknown word appearance in the transcription. Defaults to -math.inf.
        sil_score (float, optional): score for silence appearance in the transcription. Defaults to 0.0.
    """

    def __init__(
        self,
        token: str = "",
        lexicon: str = "",
        lm: str = "",
        nbest: int = 1,
        beam: int = 5,
        beam_size_token: int = -1,
        beam_threshold: float = 25.0,
        lm_weight: float = 2.0,
        word_score: float = -1.0,
        unk_score: float = -math.inf,
        sil_score: float = 0.0,
    ):
        try:
            from flashlight.lib.text.decoder import (
                CriterionType,
                KenLM,
                LexiconDecoder,
                LexiconDecoderOptions,
                SmearingMode,
                Trie,
            )
            from flashlight.lib.text.dictionary import (
                Dictionary,
                create_word_dict,
                load_words,
            )

        except ImportError:
            logger.error(
                f"Please install Flashlight Text from https://github.com/flashlight/text to enable {__class__.__name__}"
            )
            raise

        if token == "":
            token = _urls_to_filepaths(TOKEN_URL)
        if lexicon == "":
            # Try LEXICON_URL_2 if LEXICON_URL_1 did not work.
            lexicon = _urls_to_filepaths(LEXICON_URL_1)
        if lm == "":
            # Try LM_URL_2 if LM_URL_1 did not work.
            lm = _urls_to_filepaths(LM_URL_1)

        self.nbest = nbest

        self.token_dict = Dictionary(token)
        self.lexicon = load_words(lexicon)
        self.word_dict = create_word_dict(self.lexicon)

        self.lm = KenLM(lm, self.word_dict)

        self.sil_idx = self.token_dict.get_index("|")
        self.unk_idx = self.word_dict.get_index("<unk>")

        self.trie = Trie(self.token_dict.index_size(), self.sil_idx)
        start_state = self.lm.start(False)

        for word, spellings in self.lexicon.items():
            usr_idx = self.word_dict.get_index(word)
            _, score = self.lm.score(start_state, usr_idx)
            for spelling in spellings:
                spelling_idxs = [self.token_dict.get_index(tok) for tok in spelling]
                self.trie.insert(spelling_idxs, usr_idx, score)
        self.trie.smear(SmearingMode.MAX)

        if beam_size_token == -1:
            beam_size_token = self.token_dict.index_size()

        self.options = LexiconDecoderOptions(
            beam_size=beam,
            beam_size_token=beam_size_token,
            beam_threshold=beam_threshold,
            lm_weight=lm_weight,
            word_score=word_score,
            unk_score=unk_score,
            sil_score=sil_score,
            log_add=False,
            criterion_type=CriterionType.CTC,
        )

        self.blank_idx = self.token_dict.get_index("#")
        self.decoder = LexiconDecoder(
            self.options,
            self.trie,
            self.lm,
            self.sil_idx,
            self.blank_idx,
            self.unk_idx,
            [],
            False,
        )

    def get_tokens(self, idxs: Iterable) -> torch.LongTensor:
        """Normalize tokens by handling CTC blank, ASG replabels, etc.

        Args:
            idxs (Iterable): Token ID list output by self.decoder

        Returns:
            torch.LongTensor: Token ID list after normalization.
        """

        idxs = (g[0] for g in it.groupby(idxs))
        idxs = filter(lambda x: x != self.blank_idx, idxs)
        return torch.LongTensor(list(idxs))

    def get_timesteps(self, token_idxs: List[int]) -> List[int]:
        """Returns frame numbers corresponding to every non-blank token.

        Args:
            token_idxs (List[int]): IDs of decoded tokens.

        Returns:
            List[int]: Frame numbers corresponding to every non-blank token.
        """

        timesteps = []
        for i, token_idx in enumerate(token_idxs):
            if token_idx == self.blank_idx:
                continue
            if i == 0 or token_idx != token_idxs[i - 1]:
                timesteps.append(i)
        return timesteps

    def decode(self, emissions: torch.Tensor) -> List[List[dict]]:
        """Decode sequence.

        Args:
            emissions (torch.Tensor): Emission probabilities (in log scale).

        Returns:
            List[List[dict]]: Decoded hypotheses.
        """

        emissions = emissions.float().contiguous().cpu()
        B, T, N = emissions.size()

        hyps = []
        for b in range(B):
            emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
            results = self.decoder.decode(emissions_ptr, T, N)
            nbest_results = results[: self.nbest]
            hyps.append(
                [
                    dict(
                        tokens=self.get_tokens(result.tokens),
                        score=result.score,
                        timesteps=self.get_timesteps(result.tokens),
                        words=[
                            self.word_dict.get_entry(x) for x in result.words if x >= 0
                        ],
                    )
                    for result in nbest_results
                ]
            )
        return hyps