File size: 9,624 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
RNN models used in Superb Benchmark

Authors:
  * Heng-Jui Chang 2022
  * Leo 2022
"""

from typing import List, Tuple

import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

from s3prl.nn.interface import AbsFrameModel

__all__ = ["RNNEncoder", "SuperbDiarizationModel", "RNNLayer"]


def downsample(
    x: torch.Tensor, x_len: torch.LongTensor, sample_rate: int, sample_style: str
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Downsamples a sequence.

    Args:
        x (torch.Tensor): Sequence (batch, timestamps, hidden_size)
        x_len (torch.LongTensor): Sequence length (batch, )
        sample_rate (int): Downsample rate (must be greater than one)
        sample_style (str): Downsample style ("drop" or "concat")

    Raises:
        NotImplementedError: Sample style not supported.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]:
            x (torch.Tensor): (batch, timestamps // sample_rate, output_size)
            x_len (torch.LongTensor): (batch, )
    """

    B, T, D = x.shape
    x_len = torch.div(x_len, sample_rate, rounding_mode="floor")

    if sample_style == "drop":
        # Drop the unselected timesteps
        x = x[:, ::sample_rate, :].contiguous()
    elif sample_style == "concat":
        # Drop the redundant frames and concat the rest according to sample rate
        if T % sample_rate != 0:
            x = x[:, : -(T % sample_rate), :]
        x = x.contiguous().view(B, int(T / sample_rate), D * sample_rate)
    else:
        raise NotImplementedError(f"Sample style={sample_style} not supported.")

    return x, x_len


class RNNLayer(nn.Module):
    """RNN Layer

    Args:
        input_size (int): Input size.
        hidden_size (int): Hidden size.
        module (str): RNN module (RNN, GRU, LSTM)
        dropout (float, optional): Dropout rate. Defaults to 0.0.
        bidirectional (bool, optional): Bidirectional. Defaults to False.
        proj (bool, optional): Projection layer. Defaults to False.
        layer_norm (bool, optional): Layer normalization. Defaults to False.
        sample_rate (int, optional): Downsampling rate. Defaults to 1.
        sample_style (str, optional): Downsampling style (**drop** or **concat**). Defaults to "drop".
    """

    def __init__(
        self,
        input_size: int,
        hidden_size: int,
        module: str,
        dropout: float = 0.0,
        bidirectional: bool = False,
        proj: bool = False,
        layer_norm: bool = False,
        sample_rate: int = 1,
        sample_style: str = "drop",
    ):
        super().__init__()
        self._insize = input_size

        self.out_size = (
            hidden_size
            * (2 if bidirectional else 1)
            * (2 if sample_style == "concat" and sample_rate > 1 else 1)
        )
        self.dropout = dropout
        self.proj = proj
        self.layer_norm = layer_norm
        self.sample_rate = sample_rate
        self.sample_style = sample_style

        assert module.upper() in {"RNN", "GRU", "LSTM"}
        assert sample_style in {"drop", "concat"}

        self.layer = getattr(nn, module.upper())(
            input_size,
            hidden_size,
            num_layers=1,
            batch_first=True,
            bidirectional=bidirectional,
        )

        if self.layer_norm:
            rnn_out_size = hidden_size * (2 if bidirectional else 1)
            self.ln_layer = nn.LayerNorm(rnn_out_size)

        if self.dropout > 0:
            self.dp_layer = nn.Dropout(self.dropout)

        if self.proj:
            self.pj_layer = nn.Linear(self.out_size, self.out_size)

    def forward(self, xs: torch.Tensor, xs_len: torch.LongTensor):
        """
        Args:
            xs (torch.FloatTensor): (batch_size, seq_len, input_size)
            xs_len (torch.LongTensor): (batch_size, )

        Returns:
            tuple:

            1. ys (torch.FloatTensor): (batch_size, seq_len, output_size)
            2. ys_len (torch.LongTensor): (batch_size, )
        """
        if not self.training:
            self.layer.flatten_parameters()

        xs = pack_padded_sequence(
            xs, xs_len.cpu(), batch_first=True, enforce_sorted=False
        )
        output, _ = self.layer(xs)
        output, _ = pad_packed_sequence(output, batch_first=True)

        # Normalization
        if self.layer_norm:
            output = self.ln_layer(output)

        if self.dropout > 0:
            output = self.dp_layer(output)

        # Downsampling
        if self.sample_rate > 1:
            output, xs_len = downsample(
                output, xs_len, self.sample_rate, self.sample_style
            )

        # Projection
        if self.proj:
            output = torch.tanh(self.pj_layer(output))

        return output, xs_len

    @property
    def input_size(self) -> int:
        return self._insize

    @property
    def output_size(self) -> int:
        return self.out_size


class RNNEncoder(AbsFrameModel):
    """RNN Encoder for sequence to sequence modeling, e.g., ASR.

    Args:
        input_size (int): Input size.
        output_size (int): Output size.
        module (str, optional): RNN module type. Defaults to "LSTM".
        hidden_size (List[int], optional): Hidden sizes for each layer. Defaults to [1024].
        dropout (List[float], optional): Dropout rates for each layer. Defaults to [0.0].
        layer_norm (List[bool], optional): Whether to use layer norm for each layer. Defaults to [False].
        proj (List[bool], optional): Whether to use projection for each layer. Defaults to [True].
        sample_rate (List[int], optional): Downsample rates for each layer. Defaults to [1].
        sample_style (str, optional): Downsample style ("drop" or "concat"). Defaults to "drop".
        bidirectional (bool, optional): Whether RNN layers are bidirectional. Defaults to False.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        module: str = "LSTM",
        proj_size: int = 1024,
        hidden_size: List[int] = [1024],
        dropout: List[float] = [0.0],
        layer_norm: List[bool] = [False],
        proj: List[bool] = [True],
        sample_rate: List[int] = [1],
        sample_style: str = "drop",
        bidirectional: bool = False,
    ):
        super().__init__()
        self._input_size = input_size
        self._output_size = output_size

        prev_size = input_size

        self.proj = nn.Linear(prev_size, proj_size)
        prev_size = proj_size

        self.rnns = nn.ModuleList()
        for i in range(len(hidden_size)):
            rnn_layer = RNNLayer(
                input_size=prev_size,
                hidden_size=hidden_size[i],
                module=module,
                dropout=dropout[i],
                bidirectional=bidirectional,
                proj=proj[i],
                layer_norm=layer_norm[i],
                sample_rate=sample_rate[i],
                sample_style=sample_style,
            )
            self.rnns.append(rnn_layer)
            prev_size = rnn_layer.output_size

        self.linear = nn.Linear(prev_size, output_size)

    def forward(self, x: torch.Tensor, x_len: torch.LongTensor):
        """
        Args:
            xs (torch.FloatTensor): (batch_size, seq_len, input_size)
            xs_len (torch.LongTensor): (batch_size, )

        Returns:
            tuple:

            1. ys (torch.FloatTensor): (batch_size, seq_len, output_size)
            2. ys_len (torch.LongTensor): (batch_size, )
        """

        xs, xs_len = x, x_len
        xs = self.proj(xs)

        for rnn in self.rnns:
            xs, xs_len = rnn(xs, xs_len)

        logits = self.linear(xs)

        return logits, xs_len

    @property
    def input_size(self) -> int:
        return self._input_size

    @property
    def output_size(self) -> int:
        return self._output_size


class SuperbDiarizationModel(AbsFrameModel):
    """
    The exact RNN model used in SUPERB Benchmark for Speaker Diarization

    Args:
        input_size (int): input_size
        output_size (int): output_size
        rnn_layers (int): number of rnn layers
        hidden_size (int): the hidden size across all rnn layers
    """

    def __init__(
        self, input_size: int, output_size: int, rnn_layers: int, hidden_size: int
    ):
        super().__init__()
        self._input_size = input_size
        self._output_size = output_size

        self.use_rnn = rnn_layers > 0
        if self.use_rnn:
            self.rnn = nn.LSTM(
                input_size, hidden_size, num_layers=rnn_layers, batch_first=True
            )
            self.linear = nn.Linear(hidden_size, output_size)
        else:
            self.linear = nn.Linear(input_size, output_size)

    @property
    def input_size(self) -> int:
        return self._input_size

    @property
    def output_size(self) -> int:
        return self._output_size

    def forward(self, xs, xs_len):
        """
        Args:
            xs (torch.FloatTensor): (batch_size, seq_len, input_size)
            xs_len (torch.LongTensor): (batch_size, )

        Returns:
            tuple:

            1. ys (torch.FloatTensor): (batch_size, seq_len, output_size)
            2. ys_len (torch.LongTensor): (batch_size, )
        """
        features, features_len = xs, xs_len
        features = features.float()
        if self.use_rnn:
            hidden, _ = self.rnn(features)
            predicted = self.linear(hidden)
        else:
            predicted = self.linear(features)

        return predicted, features_len