File size: 6,618 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import copy

import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

from s3prl import Output
from s3prl.nn.vq_apc import VqApcLayer

__all__ = [
    "RnnApc",
]


class RnnApc(nn.Module):
    """
    The RNN model.
    Currently supporting upstreams models of APC, VQ-APC.
    """

    def __init__(self, input_size, hidden_size, num_layers, dropout, residual, vq=None):
        """
        Args:
            input_size (int):
                An int indicating the input feature size, e.g., 80 for Mel.
            hidden_size (int):
                An int indicating the RNN hidden size.
            num_layers (int):
                An int indicating the number of RNN layers.
            dropout (float):
                A float indicating the RNN dropout rate.
            residual (bool):
                A bool indicating whether to apply residual connections.
        """
        super(RnnApc, self).__init__()

        assert num_layers > 0
        self.hidden_size = hidden_size
        self.code_dim = hidden_size  # ToDo: different size?
        self.num_layers = num_layers
        in_sizes = [input_size] + [hidden_size] * (num_layers - 1)
        out_sizes = [hidden_size] * num_layers
        self.rnn_layers = nn.ModuleList(
            [
                nn.GRU(input_size=in_size, hidden_size=out_size, batch_first=True)
                for (in_size, out_size) in zip(in_sizes, out_sizes)
            ]
        )

        self.rnn_dropout = nn.Dropout(dropout)

        self.rnn_residual = residual

        #  Create N-group VQ layers (Last layer only)
        self.apply_vq = vq is not None
        if self.apply_vq:
            self.vq_layers = []
            vq_config = copy.deepcopy(vq)
            codebook_size = vq_config.pop("codebook_size")
            self.vq_code_dims = vq_config.pop("code_dim")
            assert len(self.vq_code_dims) == len(codebook_size)
            assert sum(self.vq_code_dims) == hidden_size
            for cs, cd in zip(codebook_size, self.vq_code_dims):
                self.vq_layers.append(
                    VqApcLayer(
                        input_size=cd, code_dim=cd, codebook_size=cs, **vq_config
                    )
                )
            self.vq_layers = nn.ModuleList(self.vq_layers)

        # TODO: Start with a high temperature and anneal to a small one.
        # Final regression layer
        self.postnet = nn.Linear(hidden_size, input_size)

    def create_msg(self):
        msg_list = []
        msg_list.append(
            "Model spec.| Method = APC\t| Apply VQ = {}\t".format(self.apply_vq)
        )
        msg_list.append(
            "           | n layers = {}\t| Hidden dim = {}".format(
                self.num_layers, self.hidden_size
            )
        )
        return msg_list

    def report_ppx(self):
        if self.apply_vq:
            # ToDo: support more than 2 groups
            ppx = [m.report_ppx() for m in self.vq_layers] + [None]
            return ppx[0], ppx[1]
        else:
            return None, None

    def report_usg(self):
        if self.apply_vq:
            # ToDo: support more than 2 groups
            usg = [m.report_usg() for m in self.vq_layers] + [None]
            return usg[0], usg[1]
        else:
            return None, None

    def forward(self, frames_BxLxM, seq_lengths_B, testing=False):
        """
        Args:
            frames_BxLxM (torch.LongTensor):
                A 3d-tensor representing the input features.
            seq_lengths_B (list):
                A list containing the sequence lengths of `frames_BxLxM`.
            testing (bool):
                A bool indicating training or testing phase.
                Default: False
        Return:
            Output (s3prl.Output):
                An Output module that contains `hidden_states` and `prediction`

                hidden_states (hiddens_NxBxLxH):
                    The RNN hidden representations across all layers.
                prediction (predicted_BxLxM):
                    The predicted output; used for training.
        """

        max_seq_len = frames_BxLxM.size(1)

        # N is the number of RNN layers.
        hiddens_NxBxLxH = []

        # RNN
        # Prepare initial packed RNN input.
        packed_rnn_inputs = pack_padded_sequence(
            frames_BxLxM, seq_lengths_B, batch_first=True, enforce_sorted=False
        )
        for i, rnn_layer in enumerate(self.rnn_layers):
            # https://discuss.pytorch.org/t/rnn-module-weights-are-not-part-of-single-contiguous-chunk-of-memory/6011/14
            rnn_layer.flatten_parameters()
            packed_rnn_outputs, _ = rnn_layer(packed_rnn_inputs)

            # Unpack RNN output of current layer.
            rnn_outputs_BxLxH, _ = pad_packed_sequence(
                packed_rnn_outputs, batch_first=True, total_length=max_seq_len
            )
            # Apply dropout to output.
            rnn_outputs_BxLxH = self.rnn_dropout(rnn_outputs_BxLxH)

            # Apply residual connections.
            if self.rnn_residual and i > 0:
                # Unpack the original input.
                rnn_inputs_BxLxH, _ = pad_packed_sequence(
                    packed_rnn_inputs, batch_first=True, total_length=max_seq_len
                )
                rnn_outputs_BxLxH += rnn_inputs_BxLxH

            hiddens_NxBxLxH.append(rnn_outputs_BxLxH)

            # VQ at last layer only
            if self.apply_vq and (i == len(self.rnn_layers) - 1):
                q_feat = []
                offet = 0
                for vq_layer, cd in zip(self.vq_layers, self.vq_code_dims):
                    q_f = vq_layer(
                        rnn_outputs_BxLxH[:, :, offet : offet + cd], testing
                    ).output
                    q_feat.append(q_f)
                    offet += cd
                rnn_outputs_BxLxH = torch.cat(q_feat, dim=-1)

            # Prepare packed input for the next layer.
            # Note : enforce sorted = False might lead to CUDNN_STATUS_EXECUTION_FAILED
            if i < len(self.rnn_layers) - 1:
                packed_rnn_inputs = pack_padded_sequence(
                    rnn_outputs_BxLxH,
                    seq_lengths_B,
                    batch_first=True,
                    enforce_sorted=False,
                )
        # Only return last layer feature
        feature = hiddens_NxBxLxH[-1]

        # Generate final output from codes.
        predicted_BxLxM = self.postnet(rnn_outputs_BxLxH)
        return Output(hidden_states=feature, prediction=predicted_BxLxM)