File size: 4,460 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# -*- coding: utf-8 -*- #
"""*********************************************************************************************"""
#   FileName     [ preprocess_timit.py ]
#   Synopsis     [ preprocess text transcripts and audio speech for the TIMIT dataset ]
#   Author       [ Andy T. Liu (Andi611) ]
#   Copyright    [ Copyleft(c), Speech Lab, NTU, Taiwan ]
#   Reference    [ https://github.com/Alexander-H-Liu/End-to-end-ASR-Pytorch ]
"""*********************************************************************************************"""


###############
# IMPORTATION #
###############
import os
import sys
import pickle
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
from pathlib import Path
from joblib import Parallel, delayed
from utility.audio import extract_feature, num_mels, num_mfcc, num_freq


##################
# BOOLEAB STRING #
##################
def boolean_string(s):
    if s not in ['False', 'True']:
        raise ValueError('Not a valid boolean string')
    return s == 'True'


#############################
# PREPROCESS CONFIGURATIONS #
#############################
def get_preprocess_args():
    
    parser = argparse.ArgumentParser(description='preprocess arguments for LibriSpeech dataset.')

    parser.add_argument('--data_path', default='./data/timit', type=str, help='Path to raw TIMIT dataset')
    parser.add_argument('--output_path', default='./data/', type=str, help='Path to store output', required=False)

    parser.add_argument('--feature_type', default='mel', type=str, help='Feature type ( mfcc / fbank / mel / linear )', required=False)
    parser.add_argument('--delta', default=True, type=boolean_string, help='Append Delta', required=False)
    parser.add_argument('--delta_delta', default=False, type=boolean_string, help='Append Delta Delta', required=False)
    parser.add_argument('--apply_cmvn', default=True, type=boolean_string, help='Apply CMVN on feature', required=False)

    parser.add_argument('--n_jobs', default=-1, type=int, help='Number of jobs used for feature extraction', required=False)
    parser.add_argument('--name', default='None', type=str, help='Name of the output directory', required=False)

    args = parser.parse_args()
    return args


##############
# PREPROCESS #
##############
def preprocess(args, dim):
    for s in ('train', 'dev', 'test'):
        print('')
        print(f'Preprocessing {s} data...', end='')
        todo = list(Path(os.path.join(args.data_path, s.upper())).rglob("*.[wW][aA][vV]"))
        if len(todo) == 0: todo = list(Path(os.path.join(args.data_path, s)).rglob("*.[wW][aA][vV]"))
        print(len(todo), f'audio files found in {s} set')

        if args.name == 'None':
            output_dir = os.path.join(args.output_path, '_'.join(['timit', str(args.feature_type)+str(dim)]))
        else:
            output_dir = os.path.join(args.output_path, args.name)
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        cur_path = os.path.join(output_dir, s)
        if not os.path.exists(cur_path): os.makedirs(cur_path)


        print('Extracting acoustic feature...', flush=True)
        tr_x = Parallel(n_jobs=args.n_jobs)(delayed(extract_feature)(str(file), feature=args.feature_type, \
                                            delta=args.delta, delta_delta=args.delta_delta, cmvn=args.apply_cmvn, \
                                            save_feature=os.path.join(cur_path, str(file).split('/')[-1].split('.')[0])) for file in tqdm(todo))

        
        # sort by len
        sorted_todo = [os.path.join(s, str(todo[idx]).split('/')[-1].split('.')[0]+'.npy') for idx in reversed(np.argsort(tr_x))]
        # Dump data
        df = pd.DataFrame(data={'file_path':[fp for fp in sorted_todo], 'length':list(reversed(sorted(tr_x))), 'label':None})
        df.to_csv(os.path.join(output_dir, s+'.csv'))

    print('All done, saved at', output_dir, 'exit.')


########
# MAIN #
########
def main():

    # get arguments
    args = get_preprocess_args()
    mel_dim = num_mels * (1 + int(args.delta) + int(args.delta_delta))
    mfcc_dim = num_mfcc * (1 + int(args.delta) + int(args.delta_delta))
    dim = num_freq if args.feature_type == 'linear' else (mfcc_dim if args.feature_type == 'mfcc' else mel_dim)
    print('Delta: ', args.delta, '. Delta Delta: ', args.delta_delta, '. Cmvn: ', args.apply_cmvn)

    # Process data
    preprocess(args, dim)


if __name__ == '__main__':
    main()